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Abstract

For every fixed graph H, it is known that homomorphism counts from H and colorful H-
subgraph counts can be determined in O(nt+1) time on n-vertex input graphs G, where t is the
treewidth of H. On the other hand, a running time of no(t/ log t) would refute the exponential-
time hypothesis. Komarath, Pandey and Rahul (Algorithmica, 2023) studied algebraic variants
of these counting problems, i.e., homomorphism and subgraph polynomials for fixed graphs
H. These polynomials are weighted sums over the objects counted above, where each object is
weighted by the product of variables corresponding to edges contained in the object. As shown
by Komarath et al., the monotone circuit complexity of the homomorphism polynomial for H is
Θ(ntw(H)+1).

In this paper, we characterize the power of monotone bounded-depth circuits for homomor-
phism and colorful subgraph polynomials. This leads us to discover a natural hierarchy of
graph parameters tw∆(H), for fixed ∆ ∈ N, which capture the width of tree-decompositions
for H when the underlying tree is required to have depth at most ∆. We prove that mono-
tone circuits of product-depth ∆ computing the homomorphism polynomial for H require size
Θ(ntw∆(H†)+1), where H† is the graph obtained from H by removing all degree-1 vertices. This
allows us to derive an optimal depth hierarchy theorem for monotone bounded-depth circuits
through graph-theoretic arguments.

1 Introduction

Counting and deciding the existence of patterns in graphs plays an important role in computer

science. In theoretical computer science, pattern counting was among the first problems to be in-

vestigated in Valiant’s seminal paper on the class #P of counting problems [Val79b], which showed
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#P-hardness for the permanent of zero-one matrices, a problem that can equivalently be viewed

as counting perfect matchings in bipartite graphs.

Counting small patterns. In many applications, the pattern is smaller in comparison to the tar-

get graph. Curticapean and Marx [CM14] modeled this setting by classifying the complexity of

counting subgraphs from fixed pattern classes: Given any fixed class of graphs H, they defined a

problem #Sub(H) that asks, given a graph H ∈ H and a general graph G, to count the H-subgraphs

in G. The parameter is |V(H)|. This problem is known to be polynomial-time solvable when

the graphs in H do not contain arbitrarily large matchings—if they do contain arbitrarily large

matchings, then #Sub(H) with parameter |V(H)| is complete for the parameterized complexity

class #W[1], i.e., the analogue of #P in parameterized complexity.

An analogously defined problem #Hom(H) of counting homomorphisms with patterns drawn

from H was also classified by Dalmau and Jonsson [DJ04]. Here, the tractability criterion is a con-

stant bound on the treewidth of graphs in H, a measure of the “tree-likeness” of H: The problem

#Hom(H) is polynomial-time solvable when all graphs in H admit a constant upper bound on

their treewidth, and the problem is #W[1]-hard otherwise with respect to the parameter |V(H)|.

Here, a homomorphism from H to G is a function h : V(H) → V(G) such that uv ∈ E(H) im-

plies h(u)h(v) ∈ E(G). Homomorphism counts from small patterns find direct applications in

database theory, where they capture answer counts to so-called conjunctive queries [CM16]. It

was also shown that #Hom(H) captures the complexity of other pattern counting problems, in-

cluding that of counting subgraphs [CDM17]: In a nutshell, (i) many pattern counting problems

can be expressed as unique linear combinations of homomorphism counts from graphs H, and

(ii) in many models of computation, such linear combinations turn out to be precisely as hard as

their hardest terms. This motivates understanding the complexity of these individual terms, i.e.,

of homomorphism counts.

Lower bounds under ETH. Following the classification of #Sub(H) and #Hom(H) under pa-

rameterized complexity assumptions, almost-tight quantitative bounds were obtained under the

exponential-time hypothesis [IP01; LMS11]: For any graph H, there is an O(ntw(H)+1) time al-

gorithm for counting homomorphisms from H into n-vertex target graphs, and assuming the

exponential-time hypothesis, Marx ruled out no(tw(H)/ log tw(H)) time algorithms [Mar10], recently

revisited in [Kar+24; Cur+25]. Through connections between homomorphism counts and other

pattern counts [CDM17], these bounds translate directly to other counting problems. For exam-

ple, there is an O(nvc(H)) time algorithm for counting H-subgraphs in an n-vertex graph G, where

vc(H) is the vertex-cover number of H. As a consequence of the lower bound on counting homo-

morphisms, the exponential-time hypothesis rules out no(vc(H)/ log vc(H)) time algorithms [CDM17].

Thus, some slack remains between the known upper and conditional lower bounds on the

exponents of pattern counting problems, even asymptotically: It would be desirable to settle the
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log-factor in the exponent of the running time. Moreover, one might also dare to ask for the

precise exponent for concrete finite graphs H, such as K3 (which amounts to triangle counting)

or K4 or C6. Finally, let us stress that the lower bounds on the exponent are conditioned on the

exponential-time hypothesis, an assumption that is a priori stronger than P ̸= NP.

From counting problems to polynomials. Valiant’s seminal papers [Val79a; Val80] studied the

problem of counting perfect matchings from the perspective of both counting and algebraic com-

plexity. In our paper, following the work of Komarath, Pandey, and Rahul [KPR23], we consider

an algebraic version of pattern counting problems.

For undirected graphs H and n ∈ N, we consider the homomorphism polynomial HomH,n

on variables xi,j for i, j ∈ [n] and its set-multilinear version, the colorful subgraph polynomial

ColSubH,n on variables x(e)i,j for i, j ∈ [n] and e ∈ E(H). The latter can often be handled more easily

in proofs, while complexity results can be transferred between these two polynomials.

Remark 1.1. We deviate slightly from the notation used by Komarath, Pandey, and Rahul [KPR23],

who defined a polynomial ColIsoH,n with variable indices that differ from ours. Our polynomial

ColSubH,n and their polynomial ColIsoH,n can be obtained from each other by renaming variables.

We consider our notation more intuitive, as it can be obtained from the homomorphism polyno-

mial more directly and also highlights the set-multilinearity of the polynomial.

The polynomial HomH,n can be viewed as the weighted homomorphism count from H into a

complete n-vertex graph with generic indeterminates as edge-weights. Similarly, ColSubH,n can

be viewed as counting the color-preserving homomorphism count from a colorful graph H into a

complete graph with indeterminate edge-weights and n vertices per color class. Formally, these

multivariate polynomials are defined as

HomH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

xf(u),f(v),

ColSubH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

x
(uv)
f(u),f(v).

The complexity of multivariate polynomials is commonly studied via algebraic circuits, first

formalized by Valiant [Val79a]. The efficiency of a circuit is usually quantified by its size (number

of edges and gates) and its depth (number of layers). The size captures the total number of opera-

tions the circuit performs, and the depth roughly corresponds to parallelism. For convenience, we

will instead consider the product-depth, which is the number of ‘multiplication layers’ in the circuit.

Refer to Section 2 for formal definitions. These efficiency measures define natural algebraic circuit

complexity classes, for instance, VP — polynomials of polynomially bounded degree computable

by circuits of size poly(n), and VNP — polynomials which can be expressed as a hypercube sum

of VP circuits.
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Valiant established that the permanent polynomial is complete for the class VNP, while its

sibling, the determinant polynomial, is complete for a seemingly smaller class, VBP—the class

of polynomially bounded algebraic branching programs (see Definition 2.3). In a recent line of

work [CLV21; Dur+16; MS18], homomorphism polynomials have been used to obtain natural

polynomials which are complete for several well-studied algebraic circuit classes.

Monotone circuits. Monotone circuits over a field like Z are circuits that do not use negative con-

stants, and hence computations performed by them cannot feature cancellations (Definition 2.4).

Several important techniques for proving upper bounds on the complexity of polynomials (e.g.,

dynamic programming) directly yield monotone circuits. Compared to general computational

models, lower bounds for monotone computation are much better understood, and many expo-

nential lower bounds [Sch76; Val80; JS82; RY11; GS12; CKR22] and strong algebraic complexity

class separations [Sni80; HY16; Yeh19; Sri20] are known. As a striking example, monotone vari-

ants of the algebraic complexity classes VP and VNP are proven to be different [Sri20; Yeh19]. In

contrast, Hrubes [Hru20] showed that strong-enough monotone lower bounds of a special kind

(called ϵ-sensitive) imply unconditional lower bounds for general arithmetic circuits!

In a fascinating recent work, Komarath, Pandey and Rahul [KPR23] studied the monotone

arithmetic circuit complexity of the polynomials HomH,n and discovered that this complexity is

completely determined by the treewidth of the pattern graph H. More precisely, they show that

the smallest monotone circuit computing HomH,n is of size Θ(ntw(H)+1). Similarly, they show that

algebraic branching programs for HomH,n are of size Θ(npw(H)+1), where pw(H) is the pathwidth of

H, a linear version of treewidth. Moreover, they also consider the monotone formula complexity

of HomH,n and show that it is Θ(ntd(H)+1), where td(H) is the treedepth of H, the minimum height of

a tree on vertex set V(H) that contains all edges of H in its tree-order. These results together show

that, when considering homomorphism polynomials for fixed patterns H, the power of monotone

computation is precisely characterized by graph-theoretic quantities of H: For natural and well-

studied monotone computational models, the precise exponent cH in the complexity Θ(ncH) is the

value of a natural and well-studied graph parameter of H.

Our results: Monotone bounded-depth models. In this paper, we investigate whether the cor-

respondence between monotone circuit complexity and graph parameters can also be established

for another restriction of monotone circuits, namely bounded-depth monotone circuits: Are there

natural graph parameters that dictate the bounded-depth monotone complexity of HomH,n?

Bounded-depth circuits are of central importance in algebraic complexity due to the phe-

nomenon of depth reduction. In a sequence of works [Val+83; AV08; Koi12; Tav15], it was shown

that any algebraic circuit of size s computing a polynomial of degree d can also be simulated by

a product-depth ∆ circuit of size sO(d1/∆). If the circuit was monotone to begin with, the resulting

bounded-depth circuit is also monotone. Depth reduction also implies that strong enough lower
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bounds for bounded-depth circuits will lead to general circuit lower bounds – an exceptionally

hard open question. A lot of work has gone into proving strong bounded-depth circuit lower

bounds (see [Sap21] for a survey). Recently, following the breakthrough result of Limaye, Srini-

vasan and Tavenas [LST21] superpolynomial lower bounds have been shown for bounded-depth

circuits (also see [BDS24; Ami+23]).

Studying the monotone bounded-depth complexity of HomH,n naturally leads us to define

bounded-depth versions of treewidth, the ∆-treewidth tw∆(H) for any fixed ∆ ∈ N. These graph

parameters ask to minimize the maximum bag size over all tree-decompositions of H, however

with the twist that only tree-decompositions with an underlying tree of height at most ∆ are ad-

missible. Their values interpolate between |V(H)|− 1 (when only height 1 is allowed) and tw(H)

(when no height restrictions are imposed), and they are connected to the vertex-cover number

in the special case ∆ = 2 (see Section 3). Bounded-depth variants of treewidth implicitly appear

in balancing techniques for tree-decompositions [CIP16; BH98], and the ∆-treewidth of paths also

appears implicitly in divide-and-conquer schemes for iterated matrix multiplication in a bounded-

depth setting [LST21]. A recent work of Adler and Fluck [AF24] studied a notion that bounds the

width and depth simultaneously, which they call bounded depth treewidth. Our notion of tw∆(H)

only bounds the height of the tree decomposition to ∆. In particular, for a fixed ∆, there is always

a tree decomposition of height ∆ for any graph H, but with a possibly large treewidth.

We show that the ∆-treewidth of graphs completely characterizes the complexity of HomH,n for

monotone circuits of product-depth at most ∆. For technical reasons described later, it is however

not the ∆-treewidth of H itself that governs the complexity, but rather the ∆-treewidth of the graph

H† obtained by removing all vertices of degree at most 1. We call this the pruned ∆-treewidth ptw∆

of a graph H. Our main result is as follows:

Theorem 1.2. Let H be a fixed graph and let ∆ and n be natural numbers. Then the polynomials HomH,n

and ColSubH,n have monotone circuits of size O(nptw∆(H)+1) and product-depth ∆. Moreover, any mono-
tone circuit of product-depth ∆ has size Ω(nptw∆(H)+1).

Note that any fixed pattern graph H on k vertices gives a homomorphism polynomial on nk

monomials, which has a trivial poly(n) sized monotone circuit of depth two. We stress that we

wish to determine the precise exponent in this polynomial size: In general, k could be much larger

than the pruned ∆-treewidth of H.

We also study the related computational model of algebraic branching programs (ABPs). An

ABP is a directed acyclic graph with a source vertex s and a sink t, with edges between vertices

labeled by variables or constants. The size of the ABP is the total number of vertices in the graph,

and the length of the longest path from s to t is its length. We refer the reader to Section 2 for a

formal definition of an ABP and its computation.

For a graph H, we define a new graph parameter called ∆-pathwidth pw∆(H), which asks to

minimize the bag size over all path decompositions of H where the underlying path is of length ∆.

We defer the formal definition these graph parameters to Section 3. Similar to the case of circuits,
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we show that the ∆-pathwidth of the pruned graph H† (obtained by removing degree 1 vertices

from H), which we call the pruned ∆-pathwidth ppw∆ of H characterizes the monotone ABP of

length ∆ computing HomH,n.

Theorem 1.3. Let H be a fixed graph and let ∆ and n be natural numbers such that ∆ ≥ |E(H)|. Then the
polynomials HomH,n and ColSubH,n can be computed by monotone algebraic branching programs of size
O(nppw∆(H)+1) and length ∆. Moreover, any monotone algebraic branching program of length ∆ has size
Ω(nppw∆(H)+1).

For a length-∆ ABP to compute the polynomial HomH,n (or ColSubH,n), its length needs to be at

least the degree of the polynomial (which is |E(H)|). Otherwise, we cannot even compute a single

monomial. We note that the above theorem also implies a bound on the ABP width.

For a fixed pattern graph, it was shown in [KPR23] that HomH,n and ColSubH,n have the same

“monotone complexity”. We observe that the reduction holds even in the bounded-depth (bounded-

length) case (Lemma 5.1), so we prove our results only for ColSubH,n. The upper bounds of Theo-

rem 1.2 and Theorem 1.3 are shown in Section 4 and Section 5, respectively.

Our results: Monotone depth hierarchy. Finally, by turning our attention to pattern graphs of

non-constant size, we can prove a depth hierarchy theorem for monotone circuits: Using the tight

characterization from the above theorem and the properties of pruned ∆-treewidth, we are able to

obtain the following.

Theorem 1.4. For any natural numbers n and ∆, there exists a pattern graph H∆ of size Θ(n) such that
ColSubH∆,n can be computed by a monotone circuit of size poly(n) and product-depth ∆+ 1, but every
monotone circuit of product-depth ∆ computing the polynomial needs size nΩ(n1/∆).

By general depth-reduction results, any monotone circuit of size poly(n) computing a poly-

nomial of degree n can be flattened to a monotone circuit of product-depth ∆ and size nO(n1/∆),

showing that the above theorem is optimal.

We also note that a similar near-optimal statement with a lower bound of exp(nΩ(1/∆)) can

be obtained from earlier results provided the product-depth ∆ = o(logn/ log logn) is small

(see [Chi+18]). Our results improve upon this in two ways: Firstly, our Ω(·) appears in the first

rather than second exponent, thus yielding a stronger and optimal lower bound. Secondly, our

results hold for any product-depth ∆.

2 Preliminaries

For a natural number n ∈ N, we will use [n] to refer to the set {1, . . . ,n}. We begin with some

algebraic complexity and graph-theoretic preliminaries. Readers comfortable with these notions

can safely skip this section.
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2.1 Algebraic complexity theory

Algebraic circuits are analogous to Boolean circuits, where logical operators are replaced with

underlying field operations. In this paper, we fix our field to be rationals Q. 1 To study the

complexity of polynomials, Valiant formulated the algebraic complexity theory [Val79a]. Here,

we will only give relevant definitions, but we encourage interested readers to refer to surveys for

a more comprehensive overview of the area [Mah14; Sap21; SY09].

Definition 2.1 (Algebraic Circuits). An algebraic circuit C is a layered directed acyclic graph with a

unique root node, called the output gate. Each leaf node of C is called an input gate and is labeled

by one of the variables x1, . . . , xn or a field constant. Gates are either labeled + or ×, and on every

path from the output gate to some input gate, these gate types alternate. The (product) depth of C

is the number of (multiplication) layers in the circuit, while its size is the number of vertices of the

underlying graph. The circuit naturally computes a polynomial: a +(×) gate computes the sum

(product) of the polynomials computed by its children.

Definition 2.2 (Skew Circuits). An algebraic circuit is called skew if, for every multiplication gate,

at most one of its children is an internal (non-input) gate.

Definition 2.3 (Algebraic Branching Programs). An Algebraic Branching Program (ABP) is a di-

rected acyclic graph with edges labeled by a variable or a field constant. It has a designated source
node s (of in-degree 0) and a sink node t (of out-degree 0). A path from s to t computes the product

of all edge labels along the path. The polynomial computed by the ABP is the sum of the terms

computed along all the paths from s to t. If all the constants in the ABP are non-negative, the ABP

is monotone. The size of an ABP is the total number of vertices in the graph, and the length of the

longest path from s to t is the length of the ABP.

Monotone computation, which is free of cancellations, can be simulated by algebraic circuits

(branching programs) by restricting the choice of field constants.

Definition 2.4 (Monotone Circuits and ABPs). A monotone circuit (ABP) is an algebraic circuit

(ABP) where all the field constants are non-negative. The circuit (ABP) computes a monotone poly-
nomial, where coefficients of all the monomials are non-negative.

Remark 2.5. It is not hard to show that skew circuits and ABPs are essentially the same model,

up to constant factors (e.g., see the discussion in [Mah14]). In particular, an ABP of size s and

length ∆ can be converted to a skew circuit of size O(s) and product-depth ∆. If the original ABP

is monotone, the skew circuit is monotone as well.

Finally, we define parse trees to analyze the computation of each monomial in a circuit. The

notion has appeared in several previous results [All+98; JS82; KPR23; MP08; Ven92].

1Our results hold for any field by making appropriate changes to the definition of monotone computation so that
cancellations are avoided.
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Definition 2.6 (Parse Trees). A parse tree T of an algebraic circuit C is obtained as follows:

• We include the root gate of C in T .

• For every + gate in T , we arbitrarily include any one of its children in T .

• For every × gate in T , we include all of its children in T .

We call a parse tree reduced if we ignore every + gate, and its parent and (only) child are directly

connected by an edge.

Remark 2.7. It is easy to see that every (reduced) parse tree is associated with a monomial of the

polynomial computed by the circuit. For a (reduced) parse tree T , let val(T ) be its output. Then

the polynomial computed by the circuit C is
∑

T val(T ), where the sum is over all the parse trees

of C. From here on, whenever we use the term parse tree, we mean the reduced parse tree.

2.2 Graph theory

In the following, let H be a graph. A vertex cover of H is a subset C ⊆ V(H) such that for every

edge e ∈ E(H), some vertex v ∈ C is an endpoint of e. The vertex-cover number of H is the

minimum size of a vertex-cover in H.

Definition 2.8 (Tree-decomposition and treewidth). A tree-decomposition of H is a tree T whose

vertices are annotated with bags {Xt}t∈V(T), subject to the following conditions:

1. Every vertex v of H is in at least one bag.

2. For every edge (u, v) in H there is a bag in T that contains both u and v.

3. For any vertex v of H, the subgraph of T induced by the bags containing v is a subtree.

The width of a tree decomposition T is maxt∈V(T) |Xt|− 1. The treewidth of the graph H, denoted

tw(H), is the minimum width over all tree decompositions of H.

Definition 2.9 (Path-decomposition and pathwidth). A path-decomposition of a graph H is a

tree-decomposition where the underlying tree is a path. The width of a path decomposition P

is maxt∈V(P) |Xt|− 1. The pathwidth of the graph H, denoted pw(H), is the minimum width over all

path decompositions of H.

We usually consider trees with a designated root vertex. The height of such a tree is the number

of vertices on a longest root-to-leaf path. We assume trees in tree-decompositions to be rooted in

a way that minimizes their height.
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3 Bounded versions of treewidth and pathwidth

In this section, we describe ∆-treewidth, our bounded-depth version of treewidth, and ∆-pathwidth,

a bounded-length version of pathwidth. We connect these to other known graph parameters.

Moreover, we show that full d-ary trees of depth ∆, while having ∆-treewidth 1, have (∆ − 1)-

treewidth d− 1. This behavior around the threshold ∆ will ultimately allow us to conclude Theo-

rem 1.4.

3.1 Connections to other graph parameters

First, recall the definition of ∆-treewidth from the introduction. We stress that a tree with a single

node has height 1 according to our definition.

Definition 3.1. For fixed ∆ ∈ N, the ∆-treewidth of a graph H, denoted by tw∆(H), is the mini-

mum width over all tree decompositions of H with underlying tree T of height at most ∆.

While depth-restricted tree-decompositions did arise before in the literature [CIP16], their

depth was not fixed to concrete constants in these contexts, but rather to, say, O(log |V(H)|). In

particular, differences between ∆-treewidth and (∆− 1)-treewidth were not considered.

Let us connect the ∆-treewidth of graphs to other graph parameters:

• The 1-treewidth of a graph H is merely its number of vertices |V(H)|, as the requirement on

the height forces the tree-decomposition to consist of a single bag. On the other extreme, the

|V(H)|-treewidth of H equals the treewidth of H.

• The 2-treewidth is already more curious: For any vertex-cover C, a tree-decomposition of

height 2 for H can be obtained by placing C into a root bag Xr that is connected to bags Xt for

t ∈ V(H) \C, where Xt contains t and its neighbors, all of which are in C. This shows that

the 2-treewidth of H is at most the vertex-cover number vc(H) of H. In fact, the 2-treewidth

of H equals the so-called vertex-integrity of H (minus 1). This graph parameter is defined as

minS⊆V(H)(|S|+ maxC |V(C)|), where C ranges over all connected components in the graph

H− S, see [BES87; Gim+25].

• By balancing tree-decompositions [CIP16], a universal constant c can be identified such that,

for all graphs H on k vertices, the c logk-treewidth of H is bounded by 4tw(H) + 3. That is,

at the cost of increasing width by a constant multiplicative factor, tree-decompositions can

be assumed to be of logarithmic height.

Our upper bound proof will show that vertices of degree 1 can be removed safely from H with-

out changing the bounded-depth complexity of HomH,n. This holds essentially because such ver-

tices and their incident edges can be assumed to be present in the leaves of a tree-decomposition;

these leaves then do not contribute to the product-depth of the constructed circuit. This naturally

leads to the notion of pruned ∆-treewidth.
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Definition 3.2. The pruned ∆-treewidth of a graph H, denoted by ptw∆(H), is the ∆-treewidth of

the graph H with all vertices of degree at most 1 removed.

We also define analogous bounded-length versions of pathwidth.

Definition 3.3. For fixed ∆ ∈ N, the ∆-pathwidth of a graph H, denoted by pw∆(H), is the mini-

mum width over all path decompositions of H with underlying path P of length at most ∆.

Definition 3.4. The pruned ∆-pathwidth of a graph H, denoted by ppw∆(H), is the ∆-pathwidth

of the graph H with all vertices of degree at most 1 removed.

3.2 Full d-ary trees

We conclude this section by exhibiting a pattern H whose ∆-treewidth shows a strong phase tran-

sition that we can exploit in our depth hierarchy theorem: Its ∆-treewidth is low, but even its

(∆− 1)-treewidth is high. As it turns out, H can be chosen to be the full d-ary tree.

Theorem 3.5. Let ∆,d be positive integers and let T∆ be the full d-ary tree of height ∆. Then tw∆(T∆) = 1

whereas tw∆−1(T∆) ≥ d− 1.

In order to prove the theorem, we first prove the following useful lemma for inductively

bounding the ∆-treewidth of a given graph.

Lemma 3.6. For any integers d and ∆, if a graph G contains at least d disjoint connected subgraphs
G1,G2, . . . ,Gd, and the (∆− 1)-treewidth of each of them is at least d− 1, then the ∆-treewidth of G is at
least d− 1.

Proof. Suppose T is a rooted tree-decomposition of graph G, and R is the root bag of T . We are

going to prove that either the height of T is larger than ∆ or the width of T is at least d− 1. There

are two cases to consider:

1. R contains at least one vertex from each of the subgraphs G1,G2, . . . ,Gd.

2. R does not contain any vertex from (at least) one of the subgraphs G1,G2, . . . ,Gd.

In the first case, the size of R is at least d, so the width of T is at least d − 1. In the second

case, we can assume without loss of generality that R does not contain any vertex from G1. Let

T1, T2, . . . , Tk be the subtrees obtained by removing R from T . Since R does not contain any vertex

of G1, at least one of T1, T2, . . . , Tk must contain some vertex from G1. Suppose that subtree is T1.

For any vertex v contained in both T1 and G1, since v is not in the root bag R, it must be the case

that v is not contained in any other T2, . . . , Tk as well. Similarly, every neighbor u of v in G1 is also

contained in T1 as u is not contained in R, and there must be a bag in T which contains both u and

v. Proceeding this way, we get that T1 contains the whole of G1, and the vertices from G1 appear

nowhere else.
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Removing vertices not in G1 from each bag of T1, we obtain a new tree T ′
1 . We claim that T ′

1 is

a tree-decomposition of G1. Indeed, all vertices of G1 are in T1 and the bags in T1 that contain a

vertex v form a connected component since T was a tree decomposition of G. So the same holds

for T ′
1 . Moreover, for every edge (u, v) in G1, there is a bag in T1 that contain both u and v, so the

same holds for T ′
1 .

Since the (∆− 1)-treewidth of G1 is at least d− 1, either the height of T ′
1 is larger than ∆− 1 or

the width of T ′
1 is at least d− 1. Since T ′

1 was formed by removing vertices from T1, the same holds

for T1. Consequently, either the height of T is larger than ∆ or the width of T is at least d− 1. In

both cases, the lemma holds.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. We have tw∆(T∆) = 1 for all ∆, since T∆ is a tree. For the lower bound, con-

sider the base case ∆ = 2. The height-1 tree-decomposition of the height-2 full d-ary tree T2 has

only one bag, and this bag contains all the vertices from T2. Hence, its treewidth is d ≥ d− 1.

Assume by induction that the theorem holds for all 2 ≤ ∆ ≤ k for k ∈ N. Then, for ∆ = k+ 1,

consider the height-(k+ 1) full d-ary tree Tk+1. Removing the root node of Tk+1 yields d pairwise

disjoint height-k full d-ary trees. By our inductive assumption, the (k− 1)-treewidth of each of

these trees is at least d− 1. Then by Lemma 3.6, the k-treewidth of Tk+1 is at least d− 1.

4 Upper bounds in Theorem 1.2 and Theorem 1.3

We prove the upper bound in Theorem 1.2. First, we require additional standard notation for tree-

decompositions: We consider T to be rooted with a choice of root that minimizes its height. Given

a tree-decomposition of H with underlying tree T and bags {Xt}t∈V(T), write γ(t) :=
⋃

s≥t Xs for the

cone at t, where s ranges over all descendants of t in the tree T .

Our second definition is more technical and specific to the dynamic programming approach

we use to compute homomorphism polynomials in a bottom-up manner: It allows us to track

where in the tree-decomposition an edge contributes to a monomial of the final polynomial. We

say that an edge-representation of H in T is a function rep : E(H) → V(T) that assigns to each edge

of H a node in T such that {u, v} ⊆ Xrep(uv) for all uv ∈ E(H). Note that each edge uv ∈ E(H) is

already entirely contained in at least one bag by the definition of a tree-decomposition; the function

rep simply chooses one such bag for each edge.

Given an edge-representation rep, we define the rep-height of T (which will be the product-

depth of the constructed circuit) as the maximum number of “active” nodes t on a root-to-leaf

path in T , where we call a node t active iff

• there are distinct e, e ′ ∈ E(H) with rep(e) = rep(e ′) = t, or

• there is at least one e ∈ E(H) with rep(e) = t and t has a child, or

11



• t has at least two children.

In our dynamic programming approach that proceeds bottom-up on a tree-decomposition, only

active nodes require multiplication gates; the rep-height will thus amount to the overall product-

depth of the circuit.

Lemma 4.1. Let H be a graph with a tree-decomposition consisting of tree T and bags {Xt}t∈V(T), and let rep

be an edge-representation of H in T . Then there are circuits for HomH,n and ColIsoH,n with product-depth
equal to the rep-height of T and O(|V(T)| · nw) gates for maxt∈V(T) |Xt| = w.

Proof. We describe the circuit for HomH,n and remark that the circuit for ColSubH,n can be con-

structed analogously. Considering T to be rooted, and proceeding from the leaves of T to the root,

we inductively compute polynomials Restrt,h for nodes t ∈ V(T) and functions h : Xt → [n]. The

polynomials are defined as

Restrt,h =
∑

f:γ(t)→[n]
f extends h

∏
uv∈E(H)

rep(uv)≥t

xf(u),f(v).

Here, we write s ≥ t to denote that s is a descendant of t in T . Note that Restrt,h is the restriction

of HomH,n to homomorphisms f that extend a given homomorphism h for the bag at t, such that

only those edges feature in the monomials that are represented in the cone γ(t). Then HomH,n is

the sum of Restrr,h over all h : Xr → [n] at the root r of T .

We show how to compute the polynomials Restrp,h for nodes p ∈ V(T). Let p ∈ V(T) be a node

with children N ⊆ V(T), possibly with N = ∅ if p is a leaf. Assume that Restrt,h ′ is known for all

t ∈ N and functions h ′ : Xt → [n]. Then we have

Restrp,h =

 ∏
uv∈E(H)

rep(uv)=p

xh(u),h(v)

 ·
∏
t∈N

∑
h ′ :Xt→[n]

agreeing with h
on Xt∩Xp

Restrt,h ′ . (4.1)

From this construction of the circuit, the size bound claimed in the lemma is obvious. Let us

investigate its product-depth: In the final circuit computing HomH,n, every path from the output

gate to an input gate corresponds to a path in T from the root to a leaf. Analyzing (4.1), we

see that every node t on this path contributes 1 to the product-depth iff t is active under the edge-

representation rep. Indeed, a leaf p only contributes to the product-depth if two edges e, e ′ ∈ E(H)

are represented in its bag, i.e., rep(e) = rep(e ′) = p, as then there is a nontrivial product in the

first product (over uv, shown in parentheses in (4.1)). A node p with one child only contributes

if at least one edge is represented in its bag, as then the product between the parentheses and

the remaining factor is nontrivial. A node p with at least two children always contributes to the

product-depth.
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To show that the circuit correctly computes HomH,n, we need to show that the recursive ex-

pression for Restrp,h in (4.1) is correct. Note that every edge is represented by rep in exactly one

bag and thus appears precisely once in a monomial. Because Xp is a separator in H, any function

f : γ(p) → [n] gives rise to |N| functions ft : γ(t) → [n] for t ∈ N that all agree on their values for

Xp (that is, on their values on Xp ∩ Xt) and can otherwise be chosen independently. Conversely,

any ensemble of such consistent functions can be merged to a function h : γ(p) → [n]. The product

over all t ∈ N as in (4.1) thus yields Restrp,h.

Finally, to prove the upper bound in Theorem 1.2, let H† be the graph obtained from H by

removing all degree-1 vertices. Given a tree-decomposition for H† with underlying tree T of height

∆ and width w witnessing that ptw∆(H) = w, we obtain a tree-decomposition with some tree

T ′ for H and an edge-representation rep of H in T ′ of rep-height ∆ as follows: For each vertex

v ∈ V(H) of degree 1, with neighbor u ∈ V(H), choose some node t ∈ T with u ∈ Xt and add

a node t ′ as a neighbor of t to T with bag Xt ′ = {v,u}. Choose an arbitrary representation rep of

H in the resulting tree-decomposition with tree T ′ and observe that its rep-height is at most the

height ∆ of T , even though the height of T ′ may be ∆+ 1: The bags added for degree-1 vertices and

their incident edges do not contribute towards the rep-height, as they are leaf nodes and represent

single edges. The upper bound thus follows from Lemma 4.1.

Remark 4.2. The construction from Lemma 4.1 also yields an ABP of length |V(T)| and size O(|V(T)| ·
nw) when given a path-decomposition T of H with maximum bag size w. To see this, note that the

product over t ∈ N in (4.1) involves only a single factor when T is a path-decomposition, so (4.1)

overall amounts to a skew-multiplication of a single monomial with the recursively computed

polynomial.

5 Lower bounds in Theorem 1.2 and Theorem 1.3

We adapt the lower bound proofs of [KPR23] to prove the lower bounds in our theorems. Recall

that proving the lower bound for ColSubH,n is enough, since we can use a circuit computing HomH,n

to obtain a circuit computing ColSubH,n without changing the depth of the circuit using [KPR23,

Lemma 8]. We summarize the results here for completeness.

Lemma 5.1. Let k,∆ be positive integers and H be a fixed pattern graph on k vertices.

• If there is a monotone circuit of product-depth ∆ and size s for ColSubH,n, then there is such a circuit
of size O(s) for HomH,n.

• If there is a monotone circuit of product-depth ∆ and size s for HomH,n ′ , then there is such a circuit
of size O(s|E(H)|) for ColSubH,n, where n ′ = kn.

The results also hold if circuits are replaced by ABPs, and product-depth is replaced by the length of the
ABP, provided the length is at least the degree of the polynomials.
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Proof. Given a monotone circuit of product-depth ∆ that computes ColSubH,n, we replace each

variable x
(uv)
f(u),f(v) with xf(u),f(v) if f(u) ̸= f(v) and 0 otherwise. The circuit now computes HomH,n.

For the other direction, let C be the monotone circuit of product-depth ∆ computing the HomH

polynomial over the vertex set [k]× [n]. Note that a homomorphism ϕ from H to the complete

graph on [k] × [n] maps a vertex u ∈ [k], to (v,p) where v ∈ [k] and p ∈ [n]. We introduce

auxiliary variables yuv for each edge uv ∈ E(H). For u, v ∈ [k] and p,q ∈ [n], we replace the

variable x(u,p),(v,q) with x
(uv)
p,q yuv if uv ∈ E(H) and 0 otherwise.

Let C ′ be the new circuit obtained after the replacement, and consider the partial derivative

D := ∂|E(H)|

∂ye1
···∂ye|E(H)|

C ′, with respect to all the edge variables of H. Note that every monomial in

D contains at least one variable corresponding to each edge of H. Further, set yuv = 0 in D

for all uv ∈ E(H). This ensures that every monomial in D|yuv=0 contains exactly one variable

corresponding to every edge of H, i.e., it counts only the color-preserving homomorphisms. The

coefficient of each monomial is |aut(H)|, the number of automorphisms of H, and dividing by this

number gives us ColSubH,n.

We can compute D using partial derivatives’ sum and product rules applied to every gate

in a bottom-up fashion. For a gate g, we maintain both g and ∂yeg. The partial derivative of a

sum gate, ∂ye

∑
i gi =

∑
i ∂yegi is straightforward and does not increase the depth. For a product

gate, the derivative ∂ye

∏
i gi =

∑
i

(
∂yegi

∏
j ̸=i gj

)
increases the depth by one, but this can be

absorbed in the sum layer above. Note that the product-depth does not change in both cases. A

partial derivative with respect to a single variable increases the circuit size by a factor of s. Hence,

the final circuit for D is of size O(s|E(H)|), and has product-depth ∆, the same as C.

We also note that both the constructions preserve monotonicity. Moreover, if the original circuit

C was skew (i.e. an ABP), then so is the final circuit D. From Remark 2.5, we obtain the same results

for ABPs as well.

5.1 Tree decompositions from parse trees

Consider a pattern graph H on vertex set V(H) := [k]. An alternative and more intuitive way

to think about the n-th colored subgraph isomorphism polynomial ColSubH,n is to consider the

blown-up graph G, where each vertex u ∈ [k] of H is replaced by a ‘cloud’ of n vertices Cu :=

{(u, 1), . . . , (u,n)}. Every edge uv ∈ E(H) is replaced by a complete bipartite graph between Cu

and Cv with an appropriate label for each of the n2 edges; that is, an edge between (u, i) and

(v, j) is labeled x
(uv)
i,j where u, v ∈ [k] and i, j ∈ [n]. The polynomial ColSubH,n is now obtained by

choosing a copy of H in G by picking a vertex from every cloud using a function f : V(H) → [n],

and adding the monomial

m =
∏

uv∈E(H)

x
(uv)
f(u),f(v).

We say that the monomial m above is supported on a set S ⊆ [k]× [n] if every element of S

14



looks like (u, f(u)) for u ∈ [k]. The polynomial ColSubH,n is the sum over all such monomials m

ColSubH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

x
(uv)
f(u),f(v).

Claim 5.2. Let ∆ be a natural number and T be a monotone parse tree of product-depth ∆ computing a
monomial m of ColSubH,n. Let H† be the pruned graph obtained by removing all degree-1 vertices from H.
We can extract from T a tree decomposition of H† with underlying tree T † of height ∆.

Proof. Suppose that the monomial m is supported on vertices (u, f(u)) where u ∈ [k] and f :

[k] → [n] is a function. The parse tree T has height ∆ + 1. Note that since ColSubH,n has 0/1

coefficients, we can assume that a multiplication gate has only non-constant terms as its children.

We build the tree decomposition bottom-up. We ‘mark’ certain vertices in the bags created during

this procedure. All such marks are dropped at the end (see Figure 1).

1. For an input gate x
(uv)
f(u),f(v), we add the bag {u, v} as a leaf in the tree decomposition. We mark

all the vertices of degree 1. The rest are unmarked.

2. Let g be a multiplication gate. Suppose X1, . . . ,Xm are the bags corresponding to the children

of g (that we have already constructed) and let Ui ⊆ Xi be the unmarked elements of Xi. We

then add the bag Xg :=
⋃

i∈[m]Ui as the root of X1, . . . ,Xm. If there are vertices (u, f(u)) such

that the monomial computed at g includes all the edges incident on (u, f(u)) in the copy of

H that f picked, we mark all such vertices u in the bag Xg.

3. Finally, after applying the procedure in the previous step to all the gates, we drop the bags

(and edges) corresponding to input gates.

We claim that the tree decomposition we just constructed with underlying tree T † and bags

{Xu}u∈V(T †) is a tree decomposition of H†. Note that all the edges of H were covered at the leaf

bags (that we finally dropped), as they must be present in the monomial. Since only the degree-1

vertices in a leaf bag were marked, the parent bags of the leaves (which we include in our tree

decomposition) will exactly have the vertices of H†, and thus cover all its edges.

We mark (forget) a vertex only after multiplying all its incident edges. Hence, the sub-graph

induced by a vertex u (in H†) is connected in T † and is, in fact, a subtree. As every multiplication

gate of the parse tree has exactly one associated bag, the procedure does indeed result in a tree

decomposition of H† of height ∆.

5.2 Lower bounds for ColSubH,n

Theorem 5.3. Let ∆ be a natural number and H be a pattern graph. Any monotone circuit of product-

depth ∆ computing the polynomial ColSubH,n has size Ω(nptw∆(H)+1).
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Figure 1: Extracting a tree decomposition of height 2 for H† from a parse-tree of product-depth 2

for a monomial of ColSubH,n. We have for all i ∈ [6], fi := f(i) ∈ [n].

Proof. Let C be the monotone circuit computing ColSubH,n, and let the pruned ∆-treewidth of H,

ptw∆(H) = t. Consider a monomial m of ColSubH,n supported on vertices (u, f(u)) for u ∈ [k]

and f : [k] → [n]. Let T be a parse tree of C associated with m. Now, Claim 5.2 gives a tree

decomposition of H† with tree T † and bags {Xu}u∈V(T †). Consequently, there is a bag X of size at

least t+ 1 in the tree decomposition. Without loss of generality, we assume that |X| = t+ 1. If it

is greater, we will only obtain a better lower bound. We also assume that the vertices in the bag

are 1, . . . , t+ 1 (relabeling the vertices of H does not change the complexity of ColSubH,n). Let the

corresponding gate in T associated with X be g.

We show that only a ‘few’ monomials can contain g in their parse tree. More precisely, we

claim that any monomial m ′ (other than m) that contains g in its parse tree is supported on vertices

{(u, f(u))}u∈[t+1]. Suppose not. Let m ′ have a parse tree T ′ with gate g in it but vertex (u, f ′(u))

for some u ∈ [t+ 1], with f(u) ̸= f ′(u). Recall that we obtained the tree decomposition using the

parse tree T of m. For a gate g in a parse tree, we denote by Tg the subtree rooted at g. Note that if

two parse trees contain a multiplication gate g, all the children of g are the same in both the parse

trees. We now analyze two cases:

1. The vertex u is marked at the bag associated with g: There are at least two children g1,g2
of g in T that compute monomials with (u, f(u)) in them. This holds because there are no

degree-1 vertices in the bags. If g1 in T ′ contains the vertex (u, f ′(u)), we replace T ′
g2

with

Tg2 . Similarly, in the other case, when g2 contains (u, f ′(u)). If both g1,g2 do not contain
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(u, f ′(u)) in T ′, we arbitrarily replace T ′
g1

(say) with Tg1 .

2. The vertex u is not marked at the bag associated with g: The vertex (u, f(u)) appears in Tg as
well as outside Tg. In T ′, if (u, f ′(u)) appears in T ′

g , we replace Tg with T ′
g in T . Otherwise,

we replace T ′
g with Tg in T ′.

In all cases, we obtain a valid parse tree T ′′ of C that produces a monomial supported on

(u, f(u)) and (u, f ′(u)). This leads to a contradiction, since the monomial produced by T ′′ is spu-

rious and cannot be cancelled because the circuit is monotone. Every monomial (parse tree) m

has a gate g whose corresponding bag has at least t + 1 vertices. And any other monomial m ′

(parse tree) that contains this gate g must share at least t+ 1 vertices in its support with m. Thus,

the maximum number of monomials containing this gate g equals the number of colored isomor-

phisms that fix t+ 1 vertices, which is nk−t−1. Recall that there are nk monomials in ColSubH,n,

and so we need at least nt+1 gates in the circuit.

The lower bound proof for algebraic branching programs is very similar.

Theorem 5.4. Let ∆ be a positive integer and H be a pattern graph such that ∆ ≥ |E(H)|. Any monotone
ABP of length ∆ computing the polynomial ColSubH,n has size Ω(nppw∆(H)+1).

Proof. As mentioned earlier in Remark 2.5, the size-s monotone ABP of length ∆ computing

ColSubH,n has an equivalent monotone skew-circuit C of size O(s) and product-depth ∆. Con-

sider a monomial m of ColSubH,n supported on vertices (u, f(u)) for u ∈ [k] and f : [k] → [n]. Let

T be a parse tree of C associated with m.

We observe that the procedure described in the proof of Claim 5.2 extracts a length-∆ path
decomposition of the pruned graph H† instead: as the circuit is skew, all the multiplication gates

in T have at most one non-leaf child. Since we finally dropped the bags corresponding to input

gates in our procedure, the tree decomposition we obtain is in fact a path decomposition!

Taking the pruned ∆-pathwidth of H to be t, the same proof implies that the number of mono-

mials containing a particular gate g is nk−t−1, thus implying a size lower bound of nt+1.

6 Depth Hierarchy

Combining our previous results allows us to prove a depth-hierarchy theorem for bounded-depth

monotone algebraic circuits.2

Theorem 6.1. For all integers n and ∆, there exists a pattern graph H∆ such that ColSubH∆,n can be
computed by a monotone product-depth (∆+ 1) circuit of size O(n|H∆|) but any product-depth ∆ monotone
circuit computing the polynomial needs size nΩ(|H|1/∆).

2A similar hierarchy can also be shown for monotone ABPs.
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Proof. For an integer d, let H∆ := T∆+2 be the full d-ary tree of height ∆ + 2. Note that d =

Θ(|H∆|
1/∆). The pruned (∆+ 1)-treewidth of H∆ is equal to the (∆+ 1)-treewidth of the full d-ary

tree of height (∆+ 1). That is, ptw∆+1(H∆) = tw∆+1(T∆+1) = 1. So by Lemma 4.1, there exists a

monotone circuit of product-depth ∆+ 1 and size O(n|H∆|), which computes ColSubH∆,n.

On the other hand, we have ptw∆(H∆) = tw∆(T∆+1) ≥ d − 1 by Theorem 3.5. Hence, by

Theorem 5.3, every monotone circuit of product-depth ∆ computing ColSubH∆,n necessarily has

size at least Ω(nptw∆(H∆)+1) = nΩ(|H∆|
1/∆).

If we consider the case when the pattern graph is of size Θ(n) in Theorem 6.1, we obtain the

depth hierarchy result in Theorem 1.4. As an aside, we note that an analogous depth hierarchy

cannot be obtained for the polynomials HomH,n using our methods, as the blow up in the size

given by Lemma 5.1 is exponential, when |H| = Θ(n) is not a constant.
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