
Theoretical Computer Science 1041 (2025) 115214

Available online 1 April 2025
0304-3975/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Lower bounds for the sum of small-size algebraic branching

programs ✩

C.S. Bhargav ,∗, Prateek Dwivedi , Nitin Saxena
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India

A R T I C L E I N F O A B S T R A C T

MSC:

68Q17

68Q06

Keywords:

Algebraic circuits

Algebraic branching programs

Polynomials

Lower bounds

We observe that proving strong enough lower bounds for the sum of set-multilinear Algebraic
Branching Programs (smABPs) in the low-degree regime implies Valiant’s conjecture (i.e. it implies
general ABP lower bounds). Using this connection, we obtain lower bounds for the sum of small-

sized general ABPs. In particular, we show that the sum of poly(𝑛) ABPs, each of size (∶= number of
vertices) (𝑛𝑑)𝑜(1), cannot compute the family of Iterated Matrix Multiplication polynomials IMM𝑛,𝑑

for any arbitrary function 𝑑 = 𝑑(𝑛).
We also give a dual version of our result for the sum of low-variate ROABPs (read-once oblivious
ABPs) and read-𝑘 oblivious ABPs. Both smABP and ROABP are very well-studied ‘simple’ models;
our work puts them at the forefront of understanding Valiant’s conjecture.

1. Introduction

In a pioneering work, Leslie Valiant proposed [1] an algebraic framework to study efficient ways of computing multivariate
polynomials. The computational model was that of algebraic circuits – layered directed acyclic graphs with vertices in intermediate
layers alternately labeled by addition (+) or multiplication (×), and leaves at the bottom layer labeled with variables 𝑥1 ,… , 𝑥𝑛
or constants of the underlying field 𝔽 . The circuit inductively computes a multivariate polynomial 𝑓 ∈ 𝔽 [𝑥1,… , 𝑥𝑛]. Each vertex
(gate) performs its corresponding operation (+ or ×) on the inputs it receives until finally, a designated output vertex computes the
polynomial. A measure of efficiency is the size of the circuit, that is, the number of vertices in the graph. The depth of the circuit is
the length of the longest path from the input leaves to the output vertex and measures the amount of parallelism in the circuit. For a
general survey of algebraic complexity, see [2–4].

Valiant hypothesized that there are explicit polynomials that do not have small algebraic circuits computing them, which we now
call the 𝖵𝖯 ≠ 𝖵𝖭𝖯 hypothesis. As algebraic circuits are non-uniform models of computation, computing a polynomial more precisely
refers to computing a family {𝑓𝑛}𝑛≥0 of polynomials, one for each 𝑛. The class 𝖵𝖯 consists of families of polynomials whose degree
and circuit size are both polynomially bounded in the number of variables 𝑛 (denoted poly(𝑛) from now on). On the other hand, if
a polynomial has degree poly(𝑛) and the coefficient of any given monomial can be computed in #𝖯∕poly, then the polynomial is in
𝖵𝖭𝖯.1 It is not difficult to see that 𝖵𝖯 ⊆ 𝖵𝖭𝖯.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.

E-mail addresses: bhargav@cse.iitk.ac.in (C.S. Bhargav), pdwivedi@cse.iitk.ac.in (P. Dwivedi), nitin@cse.iitk.ac.in (N. Saxena).

URLs: https://bhargavcs.github.io (C.S. Bhargav), https://www.prateekdwivedi.in (P. Dwivedi), https://www.cse.iitk.ac.in/users/nitin/ (N. Saxena).
1 This is simply a sufficient condition for a polynomial to be in 𝖵𝖭𝖯, but is enough for our purpose. A precise definition can be found in [3, Definition 1.3].

https://doi.org/10.1016/j.tcs.2025.115214

Received 31 July 2024; Received in revised form 13 January 2025; Accepted 28 March 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0002-6920-4998
http://orcid.org/0000-0002-0572-3721
http://orcid.org/0000-0001-6931-898X
mailto:bhargav@cse.iitk.ac.in
mailto:pdwivedi@cse.iitk.ac.in
mailto:nitin@cse.iitk.ac.in
https://bhargavcs.github.io
https://www.prateekdwivedi.in
https://www.cse.iitk.ac.in/users/nitin/
https://doi.org/10.1016/j.tcs.2025.115214
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115214&domain=pdf
https://doi.org/10.1016/j.tcs.2025.115214

Theoretical Computer Science 1041 (2025) 115214

2

C.S. Bhargav, P. Dwivedi and N. Saxena

Much like Cook’s original 𝖯 vs. 𝖭𝖯 hypothesis in the boolean world, very little is known in general about Valiant’s hypothesis.
A result of Strassen [5] and Baur-Strassen [6] gives a lower bound of Ω(𝑛 log𝑛) against general circuits. A slightly better lower bound
of Ω(𝑛2) is known if the directed acyclic graph underlying the circuit is a tree – also known as an Algebraic Formula. All polynomials
that have formulas of size poly(𝑛) form the class 𝖵𝖥. We refer the interested reader to the excellent book of Bürgisser [7] for more
details on Valiant’s hypothesis and connections to the Boolean world.

Intermediate in power, and in between circuits and formulas lie Algebraic Branching Programs (ABPs). An ABP is a layered directed
acyclic graph with edges labeled by affine linear forms. There is a source vertex (𝑠) of in-degree 0 in the first layer and a sink vertex
(𝑡) of out-degree 0 in the last layer, and edges connect vertices in adjacent layers. The maximum number of vertices in any layer is
the width of the ABP and the number of layers is its length. Each path from 𝑠 to 𝑡 computes a polynomial that is the product of the
edge labels along the path. The polynomial computed by the ABP is the sum of the polynomials computed by all the 𝑠⇝ 𝑡 paths.

An ABP of length 𝓁 with 𝑛𝑖 vertices in the 𝑖-th layer can be written as a product of 𝓁 − 1 matrices
∏𝓁−1
𝑖=1 𝑀𝑖 in a natural way: the

matrix 𝑀𝑖 is of dimension 𝑛𝑖 × 𝑛𝑖+1 and contains the edge labels between layers 𝑖 and 𝑖+1 as entries. The size of the ABP is the total
number of vertices in the graph (or equivalently, the sum of the number of rows of the matrices in matrix representation). Similar to
circuits and formulas, the class of polynomials that have ABPs of size poly(𝑛) is denoted 𝖵𝖡𝖯.

It is known that 𝖵𝖥 ⊆ 𝖵𝖡𝖯 ⊆ 𝖵𝖯, and conjectured that all the inclusions are strict. Valiant’s hypothesis is considered more generally
as the problem of separating any of the classes 𝖵𝖥,𝖵𝖡𝖯 or 𝖵𝖯 from 𝖵𝖭𝖯. Unfortunately (although probably not surprisingly), general
lower bounds in any of these models are hard to come by. In a recent work, Chatterjee, Kumar, She and Volk [8] proved a lower
bound of Ω(𝑛2) for ABPs. Evidently, the state of affairs is quite similar to that of circuits. In fact, the polynomial

∑𝑛

𝑖=1 𝑥
𝑛
𝑖

used in the
lower bound is the same one that Baur and Strassen [6] used for their circuit lower bound.

In this work, we will mainly be interested in set-multilinear polynomials, of which the Iterated Matrix Multiplication polynomial
is an excellent example. The polynomial IMM𝑛,𝑑 is defined on 𝑁 = 𝑑𝑛2 variables. The variable set 𝑋 is partitioned into 𝑑 sets
(𝑋1,… ,𝑋𝑑) of 𝑛2 variables each (viewed as 𝑛 × 𝑛 matrices). The polynomial is defined as the (1,1)-th entry of the matrix product
𝑋1 ⋅𝑋2⋯𝑋𝑑 :

IMM𝑛,𝑑 =
⎛⎜⎜⎝
⎡⎢⎢⎣

𝑥1,1 … 𝑥1,𝑛
⋮ ⋱ ⋮

𝑥1,𝑛2−𝑛+1 … 𝑥1,𝑛2

⎤⎥⎥⎦
⋯ ⋯

⎡⎢⎢⎣
𝑥𝑑,1 … 𝑥𝑑,𝑛
⋮ ⋱ ⋮

𝑥𝑑,𝑛2−𝑛+1 … 𝑥𝑑,𝑛2

⎤⎥⎥⎦
⎞⎟⎟⎠(1,1)

.

As all monomials are of the same degree 𝑑, the polynomial is homogeneous. It is also multilinear since every variable has individual
degree at most 1. Additionally, every monomial has exactly one variable from each of the 𝑑 sets of the partition. Thus it is set-
multilinear. Henceforth, by a set-multilinear polynomial 𝑃𝑛,𝑑 over the variable set 𝑋 =𝑋1 ⊔… ⊔ 𝑋𝑑 (with |𝑋𝑖| ≤ 𝑛 for all 𝑖 ∈ [𝑑]),
we mean a homogeneous multilinear polynomial with the following property: every monomial 𝑚 (seen as a set) in 𝑃𝑛,𝑑 satisfies
|𝑚 ∩𝑋𝑖| = 1 for all 𝑖 ∈ [𝑑].

1.1. Our results

Our first result is a lower bound against the sum of general small-size algebraic branching programs.

Theorem 1.1 (
∑

ABP lower bound). Let 𝑑 = 𝑛𝑜(1). The polynomial IMM𝑛,𝑑 cannot be computed by the sum of poly(𝑛, 𝑑) ABPs, each of
size (𝑛𝑑)𝑜(1).

Note that the polynomial IMM𝑛,𝑑 has an ABP of size 𝑂(𝑛𝑑). The above theorem shows that this is almost optimal: we cannot
reduce the size significantly, even by using a sum of polynomially many ABPs.

Remark 1.2. When 𝑑 = 𝑛Ω(1), ABPs of size (𝑛𝑑)𝑜(1) cannot produce monomials of degree 𝑑. Hence, the theorem statement is obtained
trivially (in general, a lower bound of 𝑑 is trivial for ABPs). But when 𝑑 = 𝑛𝑜(1), the model is quite powerful. In fact, for 𝑑 = 𝑛𝑜(1),
the power sum polynomial

∑𝑛

𝑖=1 𝑥
𝑑
𝑖
, that was used in previous ABP lower bounds can be computed efficiently using a sum of 𝑛 ABPs,

each of size (𝑛𝑑)𝑜(1).
A lower bound of 𝑛 is not trivial for ABPs (unlike circuits and formulas). Moreover, each edge label can be a general affine

linear form, allowing a single path to generate exponentially many monomials. Notwithstanding that, ABPs of size (𝑛𝑑)𝑜(1) are still
an incomplete model of computation. Nevertheless, the sum of such ABPs is a complete model – every polynomial of degree 𝑑 = 𝑛𝑜(1)
can be written as a sum of 𝑛𝑂(𝑑) width-1 ABPs (monomials).

The lower bound of Theorem 1.1 also holds if we replace IMM with an appropriate polynomial from the family of Nisan-Wigderson
design-based polynomials (see Section 3.1).

Our next result is a reformulation of Valiant’s conjecture in terms of a different model: the sum of set-multilinear ABPs (smABPs)
on the set of variables 𝑋 =𝑋1 ⊔… ⊔ 𝑋𝑑 . An smABP in the natural order is a (𝑑 + 1) layered ABP with edges between layers 𝑖 and
𝑖+1 labeled by linear forms in 𝑋𝑖. The most natural ABP for the polynomial IMM𝑛,𝑑 is also set-multilinear: each layer (other than the
first and the last) has 𝑛 nodes and the edge connecting the 𝑝-th node in layer 𝑖 to the 𝑞-th node in layer 𝑖+ 1 is labeled by 𝑥𝑖,(𝑝−1)𝑛+𝑞 .

Theoretical Computer Science 1041 (2025) 115214

3

C.S. Bhargav, P. Dwivedi and N. Saxena

More generally, for a permutation 𝜋 ∈ 𝑆𝑑 of the variable sets, we say that an smABP is in the order 𝜋 if the edges between 𝑖-th
and (𝑖+ 1)-th layer are labeled by linear forms in 𝑋𝜋(𝑖).2

We denote by
∑

smABP the sum of set-multilinear ABPs, each in a possibly different order. The width of a
∑

smABP is the sum
of the widths of the constituent smABPs.

We show that in the low-degree regime, superpolynomial lower bounds against
∑

smABP imply superpolynomial ABP lower
bounds.

Theorem 1.3 (Hardness bootstrapping). Let 𝑛, 𝑑 be integers such that 𝑑 =𝑂(log𝑛∕ log log𝑛). Let 𝑃𝑛,𝑑 be a set-multilinear polynomial in
𝖵𝖭𝖯 of degree 𝑑. If 𝑃𝑛,𝑑 cannot be computed by a

∑
smABP of width poly(𝑛), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

The above theorem shows that the sum of set-multilinear ABPs, which looks quite restrictive, is surprisingly powerful. This is a
recurring theme in algebraic complexity. Interestingly, analogous reductions to the set-multilinear case were known for formulas [11,
Theorem 3.1] and circuits [12, Lemma 2.11]. A series of works [13–17] on reducing the depth of algebraic circuits culminated in the
rather surprising fact that good enough lower bounds for depth-3 circuits imply general circuit lower bounds. The above theorem is
in a similar vein. The model of

∑
smABP is particularly appealing to study since smABPs are one of the most well-understood objects

in algebraic complexity.

Recently, [18] proved near-optimal lower bounds against set-multilinear formulas for a polynomial in 𝖵𝖡𝖯. Surprisingly, if their
hard polynomial were computable by an smABP (or an ordered smABP, as they call it), we would obtain general formula lower bounds.
This further illustrates the need to study smABPs.

1.2. Non-commuting matrices make it powerful

Note that if the matrices in the smABP were commutative, we can treat
∑

smABP as a single smABP, against which we know how
to prove lower bounds (see Section 1.5). So in order to lift the lower bound to 𝖵𝖭𝖯, it is essential that we understand the sum of
smABPs with non-commuting matrices (see Section 1.6 for a detailed discussion).

1.3. Arbitrarily low degree suffices

The low-degree regime has recently gained a lot of attention. In a breakthrough work, Limaye, Srinivasan and Tavenas [19] showed
how to prove superpolynomial lower bounds for constant-depth set-multilinear formulas when the degree is small (set-multilinear
lower bounds against arbitrary depth were known before [12,20,21], but degenerated to trivial bounds when the degree was small).
They were able to then escalate the low-degree, set-multilinear lower bounds to general constant-depth circuit lower bounds. The
theorem above shows that the low-degree regime can be helpful in proving lower bounds for ABPs as well.

1.4. A spectrum of hardness escalation

We also give a smooth generalization of Theorem 1.3 using more general versions of both set-multilinear polynomials and smABPs.
The variable set is partitioned as before: 𝑋 =𝑋1 ⊔… ⊔𝑋𝑑 with |𝑋𝑖| ≤ 𝑛 for all 𝑖.

A polynomial 𝑔 is called set-multi-𝑘-ic with respect to 𝑋 if every monomial of 𝑔 has exactly 𝑘 variables (with multiplicity) from
each of the 𝑑 sets. That is, for a monomial 𝑚 (seen as a multiset) in the support of 𝑔, |𝑚 ∩𝑋𝑖| = 𝑘. When 𝑘 = 1, the polynomial 𝑔 is
set-multilinear.

We call an ABP of length 𝑘𝑑 a set-multi-𝑘-ic ABP (denoted sm(𝑘)ABP) if every layer has edges labeled by linear forms from exactly
one of the sets 𝑋𝑖, and there are exactly 𝑘 layers corresponding to each 𝑋𝑖. As a special case, an sm(1)ABP is just a set-multilinear
ABP as defined before.

Theorem 1.4 (Hardness bootstrapping spectrum). Let 𝑛, 𝑑, 𝑘 be integers such that exp(𝑘𝑑 log𝑑) = poly(𝑛), and let 𝑃𝑛,𝑑,𝑘 be a set-multi-𝑘-ic
polynomial in 𝖵𝖭𝖯 of degree 𝑘𝑑. If 𝑃𝑛,𝑑,𝑘 cannot be computed by a

∑
sm(𝑘)ABP of width poly(𝑛), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

Remark 1.5. We note that Theorem 1.3 is an immediate consequence of Theorem 1.4 when 𝑘 = 1. An added advantage of this
generalization is the flexibility with the degree of the hard polynomial.

The set-multi-𝑘-ic ABP is inspired from the well-studied multi-𝑘-ic depth-restricted circuits and formulas, initiated by Kayal and
Saha [22]. We encourage readers to see [23, Chapter 14] and references therein for a comprehensive discussion.

2 This definition differs slightly from that of Forbes [9] as it does not allow affine linear forms as edge labels. We use this definition as the ABPs we encounter are
of this more restricted form and proving lower bounds for them is sufficient. Our definition is more in line with the earlier work of Klivans and Shpilka [10].

Theoretical Computer Science 1041 (2025) 115214

4

C.S. Bhargav, P. Dwivedi and N. Saxena

1.5. The sum of ROABPs perspective: the arbitrarily low variate case

One can also view Theorem 1.3 through the lens of another well-studied model in the literature, first defined by Forbes and Shpilka
[24]. An algebraic branching program over the variables (𝑥1 ,… , 𝑥𝑛) is said to be oblivious if, for any layer, all the edge labels are
univariate polynomials in a single variable. It is further called a read-once oblivious ABP (or an ROABP) if every variable appears in
at most one layer.

An ROABP in the natural order is an (𝑛 + 1)-layered ABP where the edges between layers 𝑖 and 𝑖 + 1 are labeled by univariate
polynomials in 𝑥𝑖 of degree 𝑑. If, instead, the labels were univariate polynomials in 𝑥𝜋(𝑖) for some permutation 𝜋 ∈ 𝑆𝑑 of the variables,
then we say that the ROABP is in the order 𝜋.

The computation that an ROABP (or equivalently, an smABP) performs is essentially non-commutative since the variables along a
path get multiplied in the same order 𝜋 as that of the ROABP (smABP). Nisan [25] introduced the powerful technique of using spaces
of partial derivatives to study lower bound questions in non-commutative models. This technique can be used to calculate the exact
width of the ROABP computing a polynomial.

Following our definition for smABPs, we denote by
∑

RO the sum of ROABPs, each possibly in a different order. The width of a ∑
RO is the sum of the widths of the constituent ROABPs. A version of Theorem 1.3 can also be stated for this model. In contrast to

the case of smABPs, we will be interested in the dual low-variate regime.

Corollary 1.6 (Low variate
∑

RO). Let 𝑛, 𝑑 be integers such that 𝑛=𝑂(log𝑑∕ log log𝑑). Let 𝑓 ∈ 𝖵𝖭𝖯 be a polynomial on 𝑛 variables of
individual degree 𝑑. If 𝑓 cannot be computed by a

∑
RO of width poly(𝑑), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

Proof. Consider the invertible map 𝜙 ∶ 𝑥𝑗
𝑖
↦ 𝑥𝑖𝑗 for the indices 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑]. This transforms an ROABP on 𝑛 variables (𝑥1,… , 𝑥𝑛)

of individual degree 𝑑 and order 𝜋, to an smABP in the same order that is set-multilinear with respect to 𝑋 = 𝑋1 ⊔… ⊔ 𝑋𝑛 with
|𝑋𝑖| ≤ 𝑑.

We apply the map 𝜙 to the
∑

RO computing 𝑓 . This gives us a
∑

smABP of the same width that computes a set-multilinear
polynomial 𝑄𝑑,𝑛 over 𝑂(𝑛𝑑) variables with 𝑛 =𝑂(log𝑑∕ log log𝑑). Since 𝑓 does not have a

∑
RO of width poly(𝑑), 𝑄𝑑,𝑛 does not have ∑

smABP of width poly(𝑑). Now Theorem 1.3 gives us our desired separation. □

The low-variate regime3 has also recently been shown to be extremely important. The Polynomial Identity Testing (PIT) problem
asks to efficiently test whether a polynomial (given as an algebraic circuit, for example) is identically zero. In the black-box setting,
we are only allowed to evaluate the polynomial (circuit) at various points. Hence, PIT algorithms are equivalent to the construction
of hitting sets – a collection of points that witness the (non)zeroness of the polynomial computed by the circuit (see [26,27] for a
survey of PIT and techniques used).

Recently, several surprising results [28–30] essentially conclude that hitting sets for circuits computing extremely low-variate
polynomials can be “bootstrapped” to obtain hitting sets for general circuits. See the survey of Kumar and Saptharishi [31] for an
exposition of the ideas involved.

We now state a corollary of Theorem 1.4 that is analogous to Corollary 1.6. An oblivious ABP is said to be read-𝑘 if each variable
𝑥𝑖 appears in at most 𝑘 layers. We denote the sum of read-𝑘 oblivious ABPs as

∑
R(𝑘)O. Once again, the width of a

∑
R(𝑘)O is the

sum of the widths of the constituent branching programs.

Corollary 1.7. Let 𝑛, 𝑑, 𝑘 be integers such that exp(𝑘𝑛 log𝑛) = poly(𝑑). Let 𝑓 ∈ 𝖵𝖭𝖯 be a polynomial on 𝑛 variables of individual degree 𝑑.
If 𝑓 cannot be computed by a

∑
R(𝑘)O of width poly(𝑑), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

Proof. Consider the invertible map 𝜙 ∶ 𝑥𝑗
𝑖
↦ 𝑥𝑖𝑗 for the indices 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑]. This transforms an R(𝑘)OABP on 𝑛 variables

(𝑥1,… , 𝑥𝑛) of individual degree 𝑑, to an sm(𝑘)ABP of width 𝑑 and length 𝑘𝑛 wrt variable partitioning 𝑋 = 𝑋1 ⊔… ⊔ 𝑋𝑛 with
|𝑋𝑖| ≤ 𝑑.

We apply the map 𝜙 to the
∑

R(𝑘)O computing 𝑓 . This gives us a
∑

sm(𝑘)ABP of length 𝑘𝑛 that computes a set-multi-𝑘-ic
polynomial 𝑄𝑑,𝑛,𝑘 over 𝑛𝑑 variables. Since 𝑓 does not have a

∑
R(𝑘)O of width poly(𝑑), the transformation induced by the map

implies that 𝑄𝑑,𝑛,𝑘 does not have
∑

sm(𝑘)ABP of width poly(𝑑). Moreover exp(𝑘𝑛 log𝑛) = poly(𝑑). Then Theorem 1.4 gives us our
desired separation. □

1.6. Proof techniques and previous work

Simulating an ABP using a sum of smABPs

Unlike the boolean world, both the degree 𝑑 of the polynomial, and the number of variables 𝑛 are important parameters in algebraic
complexity. Often times, it is reasonable and useful to impose restrictions on one of them. Even in the definitions 𝖵𝖯 and 𝖵𝖭𝖯, we
require that the degree 𝑑 be restricted by a polynomial in 𝑛 (see [32] for more discussion on the motivation behind this choice).
Further restrictions on the degree help in proving better structural results which would otherwise be prohibitively costly to perform.

3 In general for 𝖵𝖭𝖯, we require the degree to be polynomially related to the number of variables. One way to make sense of the low variate case is to assume that
the polynomial is defined on 𝑑 variables but only depends on the first 𝑛=𝑂(log𝑑∕ log log𝑑) many of them.

Theoretical Computer Science 1041 (2025) 115214

5

C.S. Bhargav, P. Dwivedi and N. Saxena

In order to prove Theorem 1.3, we perform a sequence of structural transformations to the algebraic branching program to obtain
a
∑

smABP. We first homogenize the ABP (Lemma 2.2), i.e., we alter the ABP so that every vertex in the ABP computes a homogeneous
polynomial. In addition, we will ensure that the ABP has 𝑑 layers and all the edge labels are linear forms. The homogenization of
ABPs to this form was folklore. Subsequently, we set-multilinearize the branching program (Lemma 2.1). This step is only efficient
in the low-degree regime since what we obtain is a sum of 𝑑𝑂(𝑑) set-multilinear ABPs.

With the reduction in place, superpolynomial lower bounds for
∑

smABP imply the same for ABPs, albeit in the low-degree
regime. The proof of Theorem 1.4 is similar.

Lower bounds for the sum of ABPs

Our proof of the
∑

ABP lower bound (Theorem 1.1) uses the implicit reduction of Theorem 1.3 to
∑

smABP. Using Nisan’s charac-

terization [25] mentioned before, we can prove exponential lower bounds against single smABPs (ROABPs), but the characterization
does not extend to their sums. There has been progress in handling the sums in recent years, which we now briefly describe.

Arvind and Raja [33] proved a superpolynomial lower bound for the Permanent polynomial against the sum of sub-linear many
ROABPs (the bound is exponential if the number of ROABPs is bounded by a constant). Ramya and Rao [34] showed that a sum of
sub-exponential size ROABPs computing the multilinear polynomial defined by Raz and Yehudayoff [35] needs exponentially many
summands. Ghosal and Rao [36] showed an exponential lower bound for the sum of ROABPs computing the multilinear polynomial
defined by Dvir, Malod, Perifel and Yehudayoff [37], provided each of the constituent ABPs is polynomial in size.

Unfortunately, these results do not imply general ABP lower bounds using our hardness escalation theorems, as they only work
in regimes where the degree and number of variables are comparable. Viewed differently, they cannot handle a sum of 𝑑! smABPs
(or 𝑛! ROABPs) which is necessary to prove lower bounds in our low-degree (low-variate) regime. In a very recent work Chatterjee,
Kush, Saraf and Shpilka [38] improve the bounds in the above works and also prove superpolynomial lower bounds against the sum
of smABPs when the degree is 𝑑 = 𝜔(log𝑛). Improving this to work for 𝑑 =𝑂(log𝑛∕ log log𝑛) would have dramatic consequences.

Fewer results are known about read-𝑘 oblivious ABPs. They were studied in [39] as a natural generalization of ROABPs and a
lower bound of exp(𝑛∕𝑘𝑂(𝑘)) for a single read-𝑘 oblivious ABP was shown. It remains open to improve this result to prove non-trivial
lower bounds when 𝑘 is large, as well as to prove lower bounds for sums of read-𝑘 oblivious ABPs. When 𝑘 is small, the results of
Ramya and Rao [34] extend to the sum of multilinear 𝑘-pass ABPs, a restriction of read-𝑘 oblivious ABPs in which the variables are
read 𝑘 times in sequence, each time in a possibly different order.

We demonstrate a way to handle our low-degree regime in certain cases. To prove lower bounds for the sum of smABPs, we
use the partial derivative method, introduced in the highly influential work of Nisan and Wigderson [12]. We show that the partial
derivative measure 𝜇(⋅) is large for our hard polynomial but small for the model. In fact, a majority of the lower bounds in algebraic
complexity (including the results described above) use modifications and extensions of this measure. For a comprehensive survey of
lower bounds and the use of partial derivative measure in algebraic complexity, see [40,23].

We work with the polynomial IMM𝑛,𝑑 , which gives us more flexibility in independently choosing 𝑛 and 𝑑. Unfortunately, this
choice creates a two-fold problem. The fundamental one is that IMM𝑛,𝑑 has a small smABP, as we saw before. So we can never
prove a superpolynomial lower bound for even a single poly(𝑛, 𝑑) sized smABP (let alone their sum). One might try to avoid this by
choosing a different hard polynomial that gives similar flexibility, perhaps something from the family of Nisan-Wigderson design-

based polynomials. But in fact, the complexity measure 𝜇 is also maximal for IMM𝑛,𝑑 . Hence, the usual partial derivative method
cannot be used to prove lower bounds against any model that efficiently computes IMM𝑛,𝑑 . Be that as it may, it might still be possible
to use the same technique to prove lower bounds for restrictions of the model. We are able to do this when the smABPs are sub-

polynomial in size. It also enables us to handle extremely large sums of smABPs (including those that occur from considering sums
of multiple ABPs).

This approach works in the low-degree regime, since our reductions are efficient if the degree is very small. To handle higher
degrees, we note that IMM𝑛,𝑑′ with 𝑑′ small can be obtained as a set-multilinear restriction of IMM𝑛,𝑑 . Therefore, our lower bounds
translate to higher degrees to finally give superpolynomial lower bounds against sums of small-sized general ABPs.

2. Hardness bootstrapping spectrum

We begin by showing that in the low-degree regime, a small sized ABP can be simulated by a
∑

smABP of small width. This is
very much in the spirit of the set-multilinearization result of Limaye, Srinivasan and Tavenas ([19], Proposition 9) for small-depth
circuits.

Lemma 2.1 (ABP set-multilinearization). Let 𝑃𝑛,𝑑 be a polynomial of degree 𝑑, set-multilinear with respect to the partition 𝑋 =𝑋1 ⊔…⊔𝑋𝑑
where |𝑋𝑖| ≤ 𝑛 for all 𝑖 ∈ [𝑑]. If 𝑃𝑛,𝑑 can be computed by an ABP of size 𝑠, then there is a

∑
smABP of width 𝑑𝑂(𝑑)𝑠 computing the same

polynomial.

We immediately have

Proof of Theorem 1.3. Suppose that the polynomial 𝑃𝑛,𝑑 ∈ 𝖵𝖭𝖯 can be computed by an ABP of size 𝑠. By Lemma 2.1, the polynomial
can also be computed by a

∑
smABP of width 𝑑𝑂(𝑑)𝑠. The width of any

∑
smABP computing 𝑃𝑛,𝑑 is, by assumption 𝑛𝜔(1).

Consequently, our desired separation is obtained by first noting that the above discussion implies 𝑑𝑂(𝑑)𝑠 ≥ 𝑛𝜔(1), whereby the
degree bound 𝑑 =𝑂(log𝑛∕ log log𝑛) gives 𝑑𝑂(𝑑) = poly(𝑛) and hence 𝑠 ≥ 𝑛𝜔(1). □

Theoretical Computer Science 1041 (2025) 115214

6

C.S. Bhargav, P. Dwivedi and N. Saxena

In order to prove Lemma 2.1, we first homogenize the ABP (similar to the approach of Raz [11] and Limaye, Srinivasan and
Tavenas [19]). Any vertex 𝑣 in an ABP can be thought of as computing a polynomial corresponding to the ‘sub-ABP’ between the
source 𝑠 and the vertex 𝑣. An ABP is homogeneous if the polynomial computed at every vertex is homogeneous.

Lemma 2.2 (ABP homogenization). Let 𝑓 (𝑥1,… , 𝑥𝑛) be a degree 𝑑 polynomial. Suppose that 𝑓 can be computed by an ABP of size 𝑠. Then
there is a homogeneous ABP of width 𝑠 and length 𝑑 that can compute the same polynomial. Furthermore, all the edge labels are linear
forms.

The above lemma is “folklore” with the proof idea already present in [25]. We provide a proof for completeness, based on the
exposition of [41].

Proof of Lemma 2.2. We first homogenize the ABP in a manner similar to the case of circuits. For every vertex 𝑣 (other than the
start vertex), we replace it with 𝑑 +1 vertices 𝑣(0), 𝑣(1),… , 𝑣(𝑑). Each 𝑣(𝑖) corresponds to the homogeneous degree 𝑖 component of the
polynomial computed at 𝑣. In the original ABP, say an edge from vertex 𝑢 to 𝑣 is labeled 𝓁+ 𝛿 (𝓁 is a linear form and 𝛿 is a constant).
We replace it with 2𝑑 + 1 edges. We add edges from 𝑢(𝑖) to 𝑣(𝑖) with label 𝛿 for 0 ≤ 𝑖 ≤ 𝑑. And we add edges from 𝑢(𝑖) to 𝑣(𝑖+1) with
the label 𝓁 for 0 ≤ 𝑖 ≤ 𝑑 − 1. This ABP now computes the same polynomial as before and is homogeneous.

𝑣𝑢
𝓁 + 𝛿 ⟶

𝑣(0)

𝑣(1)

⋮

𝑣(𝑑)

𝑢(0)
𝛿

𝓁

𝑢(1)
𝛿

𝓁

⋮

𝑢(𝑑)
𝛿

To make the length 𝑑, we modify it so that all vertices computing degree 𝑖 polynomials are in the layer 𝑖 (this makes the width
𝑠). If some of these vertices have no incoming edges from layer 𝑖−1, we can safely remove them. Note that the edges between layers
will be linear forms. But we may have edges labeled with constants between two vertices in the 𝑖-th layer due to our reorganization.

𝑤(𝑖+1)

𝑣(𝑖)

𝓁′

𝑢(𝑖)
𝓁

𝛿

⟶ 𝑤(𝑖+1)

𝑣(𝑖)

𝓁′

𝑢(𝑖)
𝓁 + 𝛿𝓁′

So for every vertex 𝑢 in the 𝑖-th layer, and vertex 𝑤 in the (𝑖 + 1)-th layer, we add an edge with a linear form obtained by the
sub-ABP between 𝑢 and 𝑤. Then we drop all the in-layer edges. This gives a homogeneous ABP of 𝑑 layers with all edges being linear
forms. Indeed, the edges we added initially were already linear forms, and the sub-ABPs all compute linear forms as well since every
path is of length 2 with one edge label being a constant and the other being a linear form. Note that there are multiple output vertices
now. In layer 𝑖 for example, the sum of the polynomials computed at vertices with no outgoing edges is the degree 𝑖 homogeneous
component of 𝑓 . □

As our central argument, we show that this homogeneous ABP can be efficiently set-multilinearized.

Proposition 2.3. Consider a set-multilinear polynomial 𝑃𝑛,𝑑 over the variable set 𝑋 =𝑋1 ⊔…⊔𝑋𝑑 (with |𝑋𝑖| ≤ 𝑛 for all 𝑖 ∈ [𝑑]) computed
by a homogeneous ABP of width 𝑤 and length 𝑑. Then, there is a

∑
smABP of width 𝑑!𝑤 computing 𝑃𝑛,𝑑 .

Proof. We begin by writing the homogeneous ABP in its matrix form

𝑃𝑛,𝑑 =
𝑑∏
𝑖=1
𝑀𝑖, (2.1)

Theoretical Computer Science 1041 (2025) 115214

7

C.S. Bhargav, P. Dwivedi and N. Saxena

where each 𝑀𝑖 is a 𝑤×𝑤 matrix with entries that are linear forms in the variables 𝑋. We further write each 𝑀𝑖 as a sum
∑𝑑

𝑗=1𝑀𝑖𝑗 ,
where for all 𝑗, 𝑀𝑖𝑗 is an 𝑤×𝑤 matrix with entries that are linear forms, but now in the 𝑋𝑗 variables. Doing this for every 𝑀𝑖 yields

𝑃𝑛,𝑑 =
𝑑∏
𝑖=1

𝑑∑
𝑗=1
𝑀𝑖𝑗. (2.2)

Note that since 𝑃𝑛,𝑑 is a homogeneous set-multilinear polynomial, the non-set-multilinear products in this expression can be
ignored. The matrices only contain linear forms, and thus non-set-multilinear products in the above equation only produce non-set-

multilinear monomials. We can ignore any product of the form (⋯𝑀𝑖𝑗⋯𝑀𝑖′𝑗⋯) for different 𝑖, 𝑖′. We can rearrange to obtain

𝑃𝑛,𝑑 =
∑
𝜋∈𝑆𝑑

𝑑∏
𝑖=1
𝑀𝑖𝜋(𝑖). (2.3)

This represents 𝑃𝑛,𝑑 as the sum of 𝑑! set-multilinear ABPs, each of width 𝑤. □

With this transformation in hand, we can complete the reduction and obtain Lemma 2.1.

Proof of Lemma 2.1. Suppose that the ABP for the polynomial 𝑃𝑛,𝑑 has size 𝑠. Using Lemma 2.2, we can homogenize it to obtain a
𝑑-layered homogeneous ABP of width 𝑠. By Proposition 2.3, we obtain a

∑
smABP of width 𝑑!𝑠 = 𝑑𝑂(𝑑)𝑠. □

The proof of Theorem 1.4 follows the template of Theorem 1.3. We begin with ABP homogenization, followed by a structural
transformation to the sum of set-multi-𝑘-ic ABP. The superpolynomial lower bound assumption on

∑
sm(𝑘)ABP gives the desired

separation result. The following lemma is analogous to Lemma 2.1.

Lemma 2.4 (ABP to
∑

sm(𝑘)ABP). Let 𝑃 be a set-multi-𝑘-ic polynomial with respect to the partition 𝑋 =𝑋1 ⊔…⊔𝑋𝑑 where |𝑋𝑖| ≤ 𝑛 for
all 𝑖 ∈ [𝑑]. If 𝑃 can be computed by an ABP of size 𝑠, then there is a

∑
sm(𝑘)ABP of width 𝑠 ⋅ (𝑘𝑑)!∕(𝑘!)𝑑 computing the same polynomial.

Proof. Using Lemma 2.2 on the ABP of size 𝑠 computing the polynomial 𝑃 of degree 𝑘𝑑, we obtain a 𝑘𝑑-layered homogeneous ABP
of width 𝑠. Consider the homogeneous ABP in its matrix form:

𝑃 =
𝑘𝑑 ∏
𝑖=1
𝑀𝑖,

where each 𝑀𝑖 is a 𝑠 × 𝑠 matrix with entries that are linear forms in the variable 𝑋. Express each 𝑀𝑖 as a sum
∑𝑑

𝑗=1𝑀𝑖𝑗 , where for
all 𝑗, 𝑀𝑖𝑗 is a 𝑠 × 𝑠 matrix with entries that are linear forms only in 𝑋𝑗 variables. Doing this for every 𝑀𝑖 yields

𝑃 =
𝑘𝑑 ∏
𝑖=1

𝑑∑
𝑗=1
𝑀𝑖𝑗.

Since 𝑃 is a homogeneous set-multi-𝑘-ic polynomial, products of the form (⋯𝑀𝑖𝑗⋯𝑀𝑖′𝑗⋯) for different 𝑖, 𝑖′ are allowed in the
expression, but not more than 𝑘. Formally, we say a tuple 𝒋 ∶= (𝑗1,… , 𝑗𝑘𝑑) ∈ [𝑑]𝑘𝑑 is 𝑘-unbiased if all the elements in the tuple repeat
exactly 𝑘 times. Let 𝑆 be the set of such 𝑘-unbiased tuples. We rearrange to obtain

𝑃 =
∑
𝒋∈𝑆

𝑘𝑑 ∏
𝑖=1
𝑀𝑖𝑗𝑖

.

Noting that |𝑆| = (𝑘𝑑)!∕(𝑘!)𝑑 , the expression above represents 𝑃 as sum of (𝑘𝑑)!∕(𝑘!)𝑑 set-multi-𝑘-ic ABPs, each of width 𝑠. □

It is straightforward to prove Theorem 1.4 using the above lemma. The proof is similar to Theorem 1.3.

Proof of Theorem 1.4. Suppose that the polynomial 𝑃𝑛,𝑑,𝑘 ∈ 𝖵𝖭𝖯 can be computed by an ABP of size 𝑠. Using Lemma 2.4, it can
also be computed by a

∑
sm(𝑘)ABP of width 𝑠 ⋅ (𝑘𝑑)!∕(𝑘!)𝑑 . By assumption, the width of any

∑
sm(𝑘)ABP computing 𝑃 is 𝑛𝜔(1). We

obtain the desired separation 𝑠 ≥ 𝑛𝜔(1) by observing that:

𝑠 ⋅ (𝑘𝑑)!∕(𝑘!)𝑑 = 𝑠 ⋅ exp(𝑘𝑑 log𝑑) ≥ 𝑛𝜔(1),

since exp(𝑘𝑑 log𝑑) = poly(𝑛). □

3. Lower bound for the sum of ABPs

We are now ready to show that in the low degree regime, the Iterated Matrix Multiplication polynomial IMM𝑛,𝑑 cannot be
computed even by a polynomially large sum of ABPs, provided that each of the ABPs is small in size. We begin by stating a lower

Theoretical Computer Science 1041 (2025) 115214

8

C.S. Bhargav, P. Dwivedi and N. Saxena

bound for
∑

smABP in the low-degree regime. Note that in this regime, IMM has an smABP of width 𝑂(𝑛𝑑). The lemma shows that
even using the sum of multiple smABPs cannot help in reducing the width.

Lemma 3.1. Any
∑

smABP computing the polynomial IMM𝑛,𝑑 with 𝑑 =𝑂(log𝑛∕ log log𝑛), must have width at least 𝑛Ω(1).

Proof. Let the maximum width of any smABP in the sum be 𝑤. Every path in a particular set-multilinear ABP is of length 𝑑 and
computes a product of linear forms. Using the definition of ABP computation, we sum over all paths to obtain a depth-3 set-multilinear
circuit4 of top fanin 𝑤𝑑 . Doing the same for all the smABPs, we get a depth-3 set-multilinear circuit of top fan-in at most 𝑑!𝑤𝑑 .

We now apply the partial derivative method. Split 𝑋 =𝑋1 ⊔…⊔𝑋𝑑 into ‘even’ and ‘odd’ parts. That is, we consider the partition
𝑋 =𝑋(0) ⊔𝑋(1), with

𝑋(0) =𝑋2 ⊔𝑋4 ⊔… ⊔𝑋𝑘, and 𝑋(1) =𝑋1 ⊔𝑋3 ⊔… ⊔𝑋𝑘′ , (3.1)

where 𝑘 = 2⌊𝑑∕2⌋ and 𝑘′ = 2⌈𝑑∕2⌉− 1.

The partial derivative matrix (𝑓) for any polynomial 𝑓 has rows indexed by set-multilinear monomials in 𝑋(0) and columns
indexed by set-multilinear monomials in 𝑋(1). Consider now monomials 𝑚0,𝑚1 that are set-multilinear in 𝑋(0),𝑋(1) respectively. For
any set-multilinear polynomial 𝑓 , the (𝑚0,𝑚1) entry in (𝑓) is the coefficient of the monomial 𝑚0 ⋅𝑚1 in 𝑓 . It is straightforward to
see that the partial derivative matrix of IMM𝑛,𝑑 is of full rank, that is, rank((IMM𝑛,𝑑)) = 𝑛𝑑∕2.

On the other hand, when we consider a set-multilinear
∑∏∑

circuit, the linear forms at the bottom have a rank of at most 1
with respect to any partition of 𝑋. Consequently, taking products of linear forms cannot result in a polynomial of rank greater than
1. Finally, subadditivity of matrix rank implies that the rank of the set-multilinear circuit is at most the top-fanin 𝑑!𝑤𝑑 , giving

𝑛𝑑∕2 ≤ 𝑑!𝑤𝑑. (3.2)

Using the fact that 𝑑! = 𝑂(𝑑𝑑) = poly(𝑛) for our degree regime, it now follows that 𝑤 = 𝑛Ω(1) and we obtain the
∑

smABP lower
bound. □

Suppose we had to prove the lower bound of Theorem 1.1 for a single ABP computing IMM. We could then use Lemma 3.1 above
in conjunction with Lemma 2.1 to conclude the result. But when we are dealing with a sum of ABPs, we need to be more careful in
how we set-multilinearize since the ABPs no longer need to compute set-multilinear or even homogeneous polynomials.

Proof of Theorem 1.1. Suppose that IMM𝑛,𝑑 (with 𝑑 ≤ 𝑛𝑜(1)) can be written as the sum of 𝑚 ABPs of size 𝑠 = 𝑛𝑜(1) each.5 In the
corresponding matrix form, we have

IMM𝑛,𝑑 =
𝑚 ∑
𝑖=1

𝓁∏
𝑗=1
𝑀𝑖𝑗, (3.3)

where each 𝑀𝑖𝑗 is an 𝑠 × 𝑠 matrix and 𝓁 ≤ 𝑠.

Consider now the polynomial IMM𝑛,𝑑′ with 𝑑′ = 𝑂(log𝑛∕ log log𝑛). This polynomial can be obtained as a restriction of IMM𝑛,𝑑

by setting all matrices other than the first 𝑑′ in the definition of IMM to the identity matrix 𝐼𝑛. Correspondingly, Equation (3.3) now
becomes

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1

𝓁∏
𝑗=1
𝑀 ′
𝑖𝑗
, (3.4)

where just like in (3.3), each 𝑀 ′
𝑖𝑗

is an 𝑠 × 𝑠 matrix and 𝓁 ≤ 𝑠. Note that any lower bound on IMM𝑛,𝑑′ also holds for IMM𝑛,𝑑 .

We would like to set-multilinearize Equation (3.4). But we cannot directly apply Lemma 2.1 since the ABPs in the sum need not
compute a set-multilinear polynomial anymore. In fact, they need not even compute a homogeneous polynomial. Nevertheless, we
are only interested in the homogeneous component of degree 𝑑′ of the polynomials that these ABPs compute, the rest vanishing in
the final sum.

Consider a single ABP 𝐴 of size 𝑠 = 𝑛𝑜(1) from the sum of 𝑚 ABPs above. Suppose that it computes a (possibly non-homogeneous)
polynomial of degree 𝑑𝐴. Using Lemma 2.2, we can homogenize 𝐴 to obtain an ABP of length 𝑑𝐴 and width 𝑠, with linear forms on
the edges. Consider now the (possibly empty) set 𝑇 of vertices in layer 𝑑′ of this ABP that have no outgoing edges. For every 𝑣 ∈ 𝑇 ,
the sub-ABP between the start vertex 𝑠 and the vertex 𝑣 computes a homogeneous polynomial of degree 𝑑′, monomials of which
might occur in the final polynomial IMM𝑛,𝑑′ . Vertices not in 𝑇 can be safely ignored as they have outgoing edges with linear forms
on them and hence will only contribute to monomials of degree greater than 𝑑′ in the polynomial computed by 𝐴.

We now identify all the vertices in 𝑇 with a single vertex 𝑡. Furthermore, we replace all the possible multi-edges generated between
a vertex 𝑢 in layer 𝑑′ − 1 and the vertex 𝑡, with a single edge that has as its edge label the sum of all the multi-edge labels. This gives

4 Every vertex in a set-multilinear circuit computes a set-multilinear polynomial with respect to a subset of the variable sets.
5 When 𝑑 > 𝑛𝑜(1) , the lower bound trivially holds.

Theoretical Computer Science 1041 (2025) 115214

9

C.S. Bhargav, P. Dwivedi and N. Saxena

us a homogeneous ABP of width 𝑠 and length 𝑑′ computing the homogeneous component of degree 𝑑′ of the polynomial computed
by 𝐴. Performing this operation for each of the 𝑚 ABPs, we can write

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1

𝑑′∏
𝑗=1
𝑀 ′
𝑖𝑗
, (3.5)

where the new matrices obtained after homogenization have been renamed to 𝑀 ′ for brevity. As before, we split each 𝑀 ′
𝑖𝑗

as a sum ∑𝑑′

𝑘=1𝑀
′
𝑖𝑗𝑘

where for all 𝑘 ∈ [𝑑′], 𝑀 ′
𝑖𝑗𝑘

is an 𝑠 × 𝑠 matrix with entries that are linear forms in the 𝑋𝑘 variables.6

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1

𝑑′∏
𝑗=1

𝑑′∑
𝑘=1
𝑀 ′
𝑖𝑗𝑘
. (3.6)

In the proof of Proposition 2.3, we were crucially using the fact that the polynomial computed by the ABP was set-multilinear in
order to ignore non-set-multilinear products. Although this is not the case any longer, we can still ignore all the non-set-multilinear
products since they only produce non-set-multilinear monomials and the sum of the ABPs is IMM𝑛,𝑑′ , a set-multilinear polynomial.
We obtain an expression similar to Equation (2.3):

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1

∑
𝜋∈𝑆𝑑′

𝑑′∏
𝑗=1
𝑀 ′
𝑖𝑗𝜋(𝑗). (3.7)

That is, IMM𝑛,𝑑′ can be written as the sum of 𝑚𝑑′! smABPs, each of width 𝑠. We now analyze similarly to the proof of Lemma 3.1.
We convert the

∑
smABP to a depth 3 set-multilinear circuit of top-fanin at most 𝑚𝑑′!𝑠𝑑′ . Using the exact same partition of 𝑋 into

𝑋(0) and 𝑋(1) as in (3.1), we construct the partial derivative matrix  for IMM𝑛,𝑑′ and the set-multilinear
∑∏∑

circuit that we
obtained. The rank calculation results in

𝑛𝑑
′∕2 ≤𝑚𝑑′!𝑠𝑑′ , (3.8)

which along with 𝑠 = 𝑛𝑜(1) and 𝑑′! = poly(𝑛) gives 𝑚 = 𝑛𝜔(1). □

3.1. Lower bound for NW𝑛,𝑑

We show that the lower bound of Theorem 1.1 also holds for a polynomial from the family of Nisan-Wigderson design-based
polynomials.

Let 𝔽𝑛 be a field of size 𝑛 (we assume that 𝑛 is a power of a prime). We will work in the low-degree regime. For
𝑑 =𝑂(log𝑛∕ log log𝑛), consider the set of variables 𝑋 = 𝑋1 ⊔… ⊔ 𝑋𝑑 where 𝑋𝑖 = {𝑥𝑖𝑗 ∣ 𝑗 ∈ [𝑛]} for all 𝑖 ∈ [𝑑]. Let  be the set
of all univariate polynomials 𝑓 (𝑦) ∈ 𝔽𝑛[𝑦] of degree less than 𝑑∕2. The polynomial NW𝑛,𝑑 on the above 𝑛𝑑 variables is defined as

NW𝑛,𝑑 (𝑋) =
∑
𝑓∈

∏
𝑖∈[𝑑]

𝑥𝑖𝑓 (𝑖).

Each monomial encodes a univariate polynomial of degree less than 𝑑∕2. Consider the partition 𝑋 =𝑋(0) ⊔𝑋(1) from (3.1). For
a monomial 𝑚0 = 𝑥2𝑗2 ⋯𝑥𝑘𝑗𝑘 (with all 𝑗 indices in [𝑛]) that is set-multilinear in 𝑋(0) , there is a unique “extension monomial” 𝑚1
(set-multilinear in 𝑋(1)) such that 𝑚0𝑚1 is a monomial of NW𝑛,𝑑 . This is because 𝑚0 encodes the evaluations of some univariate
polynomial on points {2,… , 𝑘}. As the length of 𝑚0 is at least 𝑑∕2, interpolating these values gives a unique polynomial 𝑓 which
then determines the corresponding 𝑚1 – obtained by evaluating 𝑓 on the remaining points {1,3,… , 𝑘′} in [𝑑].

This implies that the partial derivative matrix (NW𝑛,𝑑) of size 𝑛𝑑∕2 ×𝑛𝑑∕2 has full rank. The same rank analysis as before on sums
of ABPs gives us Theorem 1.1, but with NW𝑛,𝑑 as the hard polynomial. Nevertheless, the techniques used seem to not be enough to
get us any better lower bounds. In particular, the loss of information in the conversion of an smABP (an essentially non-commutative
model) to a set-multilinear circuit seems to be too large.

4. Discussion and open problems

In order to separate 𝖵𝖡𝖯 from 𝖵𝖭𝖯, we need to prove super-polynomial lower bounds against
∑

smABP for a polynomial in 𝖵𝖭𝖯
that we expect to be hard. As noted above, the IMM polynomial is in 𝖵𝖡𝖯 (in fact, it is a canonical way to define the class 𝖵𝖡𝖯)
and cannot be used for such a separation. Since our Theorem 1.1 also holds for a polynomial from the Nisan-Wigderson family of
design-based polynomials that is in 𝖵𝖭𝖯 but not conjectured to be in 𝖵𝖡𝖯, it is a better candidate.

A first step toward proving ABP lower bounds would be to prove any non-trivial lower bounds against the sum of smABPs in the
low degree regime, i.e. prove some lower bound for the sum of 𝑑! smABPs. Another interesting direction is to show a reduction from
ABPs to the sum of fewer than 𝑑! smABPs, with a possibly super polynomial blow up in the smABP size. This would still lead to ABP

6 Alternately, we can directly convert each of the 𝑚 ABPs to a homogeneous depth-3 circuit and use the result of [12] to prove our result.

Theoretical Computer Science 1041 (2025) 115214

10

C.S. Bhargav, P. Dwivedi and N. Saxena

lower bounds if we can prove strongly exponential lower bounds against the sum of (fewer) smABPs. This question remains open as
well.

CRediT authorship contribution statement

C.S. Bhargav: Writing – review & editing. Prateek Dwivedi: Writing – review & editing. Nitin Saxena: Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] L.G. Valiant, Completeness classes in algebra, in: Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing, Atlanta, Ga., 1979, ACM,
New York, 1979, pp. 249–261.

[2] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathe-

matical Sciences), vol. 315, Springer-Verlag, Berlin, 1997, with the collaboration of Thomas Lickteig.

[3] A. Shpilka, A. Yehudayoff, Arithmetic circuits: a survey of recent results and open questions, Found. Trends Theor. Comput. Sci. 5 (3–4) (2009) 207–388, https://

doi.org/10.1561/0400000039.

[4] M. Mahajan, Algebraic complexity classes, in: Perspectives in Computational Complexity, in: Progr. Comput. Sci. Appl. Logic, vol. 26, Birkhäuser/Springer, Cham,
2014, pp. 51–75, https://arxiv.org/abs/1307.3863.

[5] V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Numer. Math. 20 (1972/1973) 238–251,
https://doi.org/10.1007/BF01436566.

[6] W. Baur, V. Strassen, The complexity of partial derivatives, Theor. Comput. Sci. 22 (3) (1983) 317–330, https://doi.org/10.1016/0304-3975(83)90110-X.

[7] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, Algorithms and Computation in Mathematics, vol. 7, Springer-Verlag, Berlin, 2000.

[8] P. Chatterjee, M. Kumar, A. She, B.L. Volk, Quadratic lower bounds for algebraic branching programs and formulas, Comput. Complex. 31 (2) (2022) 8, https://

doi.org/10.1007/s00037-022-00223-8.

[9] M.A. Forbes, Polynomial Identity Testing of Read-Once Oblivious Algebraic Branching Programs, thesis (Ph.D.)–Massachusetts Institute of Technology, ProQuest
LLC, Ann Arbor, MI, 2014.

[10] A.R. Klivans, A. Shpilka, Learning restricted models of arithmetic circuits, Theory Comput. 2 (2006) 185–206, https://doi.org/10.4086/toc.2006.v002a010.

[11] R. Raz, Tensor-rank and lower bounds for arithmetic formulas, J. ACM 60 (6) (2013) 40, https://doi.org/10.1145/2535928.

[12] N. Nisan, A. Wigderson, Lower bounds on arithmetic circuits via partial derivatives, Comput. Complex. 6 (3) (1996) 217–234, https://doi.org/10.1007/

BF01294256.

[13] L.G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff, Fast parallel computation of polynomials using few processors, SIAM J. Comput. 12 (4) (1983) 641–644, https://

doi.org/10.1137/0212043.

[14] M. Agrawal, V. Vinay, Arithmetic circuits: a chasm at depth four, in: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, 2008, pp. 67–75.

[15] P. Koiran, Arithmetic circuits: the chasm at depth four gets wider, Theor. Comput. Sci. 448 (2012) 56–65, https://doi.org/10.1016/j.tcs.2012.03.041.

[16] S. Tavenas, Improved bounds for reduction to depth 4 and depth 3, Inf. Comput. 240 (2015) 2–11, https://doi.org/10.1016/j.ic.2014.09.004.

[17] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Arithmetic circuits: a chasm at depth 3, SIAM J. Comput. 45 (3) (2016) 1064–1079, https://doi.org/10.1137/

140957123.

[18] D. Kush, S. Saraf, Near-optimal set-multilinear formula lower bounds, in: 38th Computational Complexity Conference, in: LIPIcs. Leibniz Int. Proc. Inform.,
vol. 264, Schloss Dagstuhl. Leibniz-Zent. Inform, Wadern, 2023, 15.

[19] N. Limaye, S. Srinivasan, S. Tavenas, Superpolynomial lower bounds against low-depth algebraic circuits, in: 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science—FOCS 2021, IEEE Computer Soc., Los Alamitos, CA, 2021, pp. 804–814.

[20] R. Raz, Multi-linear formulas for permanent and determinant are of super-polynomial size, J. ACM 56 (2) (2009) 8, https://doi.org/10.1145/1502793.1502797.

[21] R. Raz, A. Yehudayoff, Lower bounds and separations for constant depth multilinear circuits, Comput. Complex. 18 (2) (2009) 171–207, https://doi.org/10.

1007/s00037-009-0270-8.

[22] N. Kayal, C. Saha, Multi-k-ic depth three circuit lower bound, Theory Comput. Syst. 61 (4) (2017) 1237–1251, https://doi.org/10.1007/S00224-016-9742-9.

[23] R. Saptharishi, A survey of lower bounds in arithmetic circuit complexity, Github Survey, 2021, https://github.com/dasarpmar/lowerbounds-survey.

[24] M.A. Forbes, A. Shpilka, Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs, in: 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science—FOCS 2013, IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 243–252.

[25] N. Nisan, Lower bounds for non-commutative computation, in: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC ’91,
Association for Computing Machinery, New York, NY, USA, 1991, pp. 410–418.

[26] N. Saxena, Progress on polynomial identity testing, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 99 (2009) 49–79, https://www.cse.iitk.ac.in/users/nitin/papers/

pit-survey09.pdf.

[27] N. Saxena, Progress on polynomial identity testing-II, in: Perspectives in Computational Complexity, in: Progr. Comput. Sci. Appl. Logic, vol. 26,
Birkhäuser/Springer, Cham, 2014, pp. 131–146, https://arxiv.org/abs/1401.0976.

[28] M. Agrawal, S. Ghosh, N. Saxena, Bootstrapping variables in algebraic circuits, Proc. Natl. Acad. Sci. USA 116 (17) (2019) 8107–8118, https://doi.org/10.1073/

pnas.1901272116.

[29] M. Kumar, R. Saptharishi, A. Tengse, Near-optimal bootstrapping of hitting sets for algebraic circuits, in: Proceedings of the Thirtieth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SIAM, Philadelphia, PA, 2019, pp. 639–646.

[30] Z. Guo, M. Kumar, R. Saptharishi, N. Solomon, Derandomization from algebraic hardness, SIAM J. Comput. 51 (2) (2022) 315–335, https://doi.org/10.1137/

20M1347395.

[31] M. Kumar, R. Saptharishi, Hardness-randomness tradeoffs for algebraic computation, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 3 (129) (2019) 56–87, http://

bulletin.eatcs.org/index.php/beatcs/article/view/591/599.

[32] J. Grochow, Degree restriction for polynomials in 𝖵𝖯, Theoretical Computer Science Stack Exchange, https://cstheory.stackexchange.com/q/19268 (version:
2013-10-03).

[33] V. Arvind, S. Raja, Some lower bound results for set-multilinear arithmetic computations, Chic. J. Theor. Comput. Sci. (2016) 6, https://doi.org/10.4086/cjtcs.

2016.006.

http://refhub.elsevier.com/S0304-3975(25)00152-5/bib483A6AEA030F6AAB384208A5776EE7D3s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib483A6AEA030F6AAB384208A5776EE7D3s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib852FF642CE9306D3499F7EF8BD03C448s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib852FF642CE9306D3499F7EF8BD03C448s1
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://arxiv.org/abs/1307.3863
https://doi.org/10.1007/BF01436566
https://doi.org/10.1016/0304-3975(83)90110-X
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib3D36AB5A51EA863398CC2E5FC5FE1823s1
https://doi.org/10.1007/s00037-022-00223-8
https://doi.org/10.1007/s00037-022-00223-8
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib70887E5E5D2D931CBB891FFCC444175Cs1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib70887E5E5D2D931CBB891FFCC444175Cs1
https://doi.org/10.4086/toc.2006.v002a010
https://doi.org/10.1145/2535928
https://doi.org/10.1007/BF01294256
https://doi.org/10.1007/BF01294256
https://doi.org/10.1137/0212043
https://doi.org/10.1137/0212043
http://refhub.elsevier.com/S0304-3975(25)00152-5/bibB26E39BDCD337F598AC5BCB3AEF4A938s1
https://doi.org/10.1016/j.tcs.2012.03.041
https://doi.org/10.1016/j.ic.2014.09.004
https://doi.org/10.1137/140957123
https://doi.org/10.1137/140957123
http://refhub.elsevier.com/S0304-3975(25)00152-5/bibB6ACFEE0610C1E0429A8050C5ADCB089s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bibB6ACFEE0610C1E0429A8050C5ADCB089s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib2A76BC4562B88FCA3C8D5A94F1BAD559s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib2A76BC4562B88FCA3C8D5A94F1BAD559s1
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1007/s00037-009-0270-8
https://doi.org/10.1007/s00037-009-0270-8
https://doi.org/10.1007/S00224-016-9742-9
https://github.com/dasarpmar/lowerbounds-survey
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib0D89EF7E80BC0D6534C89DBA02C7046Cs1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib0D89EF7E80BC0D6534C89DBA02C7046Cs1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib0A5F7EA428AF0944CF6A0CE8AC6FB785s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib0A5F7EA428AF0944CF6A0CE8AC6FB785s1
https://www.cse.iitk.ac.in/users/nitin/papers/pit-survey09.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/pit-survey09.pdf
https://arxiv.org/abs/1401.0976
https://doi.org/10.1073/pnas.1901272116
https://doi.org/10.1073/pnas.1901272116
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib658FBC33967812E8AB2217109029A4CFs1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib658FBC33967812E8AB2217109029A4CFs1
https://doi.org/10.1137/20M1347395
https://doi.org/10.1137/20M1347395
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
https://cstheory.stackexchange.com/q/19268
https://doi.org/10.4086/cjtcs.2016.006
https://doi.org/10.4086/cjtcs.2016.006

Theoretical Computer Science 1041 (2025) 115214

11

C.S. Bhargav, P. Dwivedi and N. Saxena

[34] C. Ramya, B.V. Raghavendra Rao, Lower bounds for special cases of syntactic multilinear ABPs, Theor. Comput. Sci. 809 (2020) 1–20, https://doi.org/10.1016/

j.tcs.2019.10.047.

[35] R. Raz, A. Yehudayoff, Balancing syntactically multilinear arithmetic circuits, Comput. Complex. 17 (4) (2008) 515–535, https://doi.org/10.1007/s00037-008-

0254-0.

[36] P. Ghosal, B.V.R. Rao, Limitations of sums of bounded read formulas and ABPs, in: Computer Science—Theory and Applications, in: Lecture Notes in Comput.
Sci., vol. 12730, Springer, Cham, 2021, pp. 147–169.

[37] Z. Dvir, G. Malod, S. Perifel, A. Yehudayoff, Separating multilinear branching programs and formulas, in: STOC’12—Proceedings of the 2012 ACM Symposium
on Theory of Computing, ACM, New York, 2012, pp. 615–623.

[38] P. Chatterjee, D. Kush, S. Saraf, A. Shpilka, Lower bounds for set-multilinear branching programs, in: R. Santhanam (Ed.), 39th Computational Complexity
Conference (CCC 2024), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 300, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 2024, pp. 20:1–20:20, https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20.

[39] M. Anderson, M.A. Forbes, R. Saptharishi, A. Shpilka, B.L. Volk, Identity testing and lower bounds for read-k oblivious algebraic branching programs, ACM Trans.
Comput. Theory 10 (1) (2018) 3:1–3:30, https://doi.org/10.1145/3170709.

[40] X. Chen, N. Kayal, A. Wigderson, Partial derivatives in arithmetic complexity and beyond, Found. Trends Theor. Comput. Sci. 6 (1–2) (2010) 1–138, https://

doi.org/10.1561/0400000043.

[41] C. Ikenmeyer, J.M. Landsberg, On the complexity of the permanent in various computational models, J. Pure Appl. Algebra 221 (12) (2017) 2911–2927, https://

doi.org/10.1016/j.jpaa.2017.02.008.

https://doi.org/10.1016/j.tcs.2019.10.047
https://doi.org/10.1016/j.tcs.2019.10.047
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1007/s00037-008-0254-0
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib9DF6844C28F71593D11BB259F3C933B1s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bib9DF6844C28F71593D11BB259F3C933B1s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bibE080400C06333F486F12BCFE9273FA63s1
http://refhub.elsevier.com/S0304-3975(25)00152-5/bibE080400C06333F486F12BCFE9273FA63s1
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20
https://doi.org/10.1145/3170709
https://doi.org/10.1561/0400000043
https://doi.org/10.1561/0400000043
https://doi.org/10.1016/j.jpaa.2017.02.008
https://doi.org/10.1016/j.jpaa.2017.02.008

	Lower bounds for the sum of small-size algebraic branching programs
	1 Introduction
	1.1 Our results
	1.2 Non-commuting matrices make it powerful
	1.3 Arbitrarily low degree suffices
	1.4 A spectrum of hardness escalation
	1.5 The sum of ROABPs perspective: the arbitrarily low variate case
	1.6 Proof techniques and previous work
	Simulating an ABP using a sum of smABPs
	Lower bounds for the sum of ABPs

	2 Hardness bootstrapping spectrum
	3 Lower bound for the sum of ABPs
	3.1 Lower bound for NWn,d

	4 Discussion and open problems
	CRediT authorship contribution statement
	Declaration of competing interest
	References

