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We observe that proving strong enough lower bounds for the sum of set-multilinear Algebraic 
Branching Programs (smABPs) in the low-degree regime implies Valiant’s conjecture (i.e. it implies 
general ABP lower bounds). Using this connection, we obtain lower bounds for the sum of small-

sized general ABPs. In particular, we show that the sum of poly(𝑛) ABPs, each of size (∶= number of 
vertices) (𝑛𝑑)𝑜(1), cannot compute the family of Iterated Matrix Multiplication polynomials IMM𝑛,𝑑

for any arbitrary function 𝑑 = 𝑑(𝑛).
We also give a dual version of our result for the sum of low-variate ROABPs (read-once oblivious 
ABPs) and read-𝑘 oblivious ABPs. Both smABP and ROABP are very well-studied ‘simple’ models; 
our work puts them at the forefront of understanding Valiant’s conjecture.

1. Introduction

In a pioneering work, Leslie Valiant proposed [1] an algebraic framework to study efficient ways of computing multivariate 
polynomials. The computational model was that of algebraic circuits – layered directed acyclic graphs with vertices in intermediate 
layers alternately labeled by addition (+) or multiplication (×), and leaves at the bottom layer labeled with variables 𝑥1 ,… , 𝑥𝑛
or constants of the underlying field 𝔽 . The circuit inductively computes a multivariate polynomial 𝑓 ∈ 𝔽 [𝑥1,… , 𝑥𝑛]. Each vertex 
(gate) performs its corresponding operation (+ or ×) on the inputs it receives until finally, a designated output vertex computes the 
polynomial. A measure of efficiency is the size of the circuit, that is, the number of vertices in the graph. The depth of the circuit is 
the length of the longest path from the input leaves to the output vertex and measures the amount of parallelism in the circuit. For a 
general survey of algebraic complexity, see [2–4].

Valiant hypothesized that there are explicit polynomials that do not have small algebraic circuits computing them, which we now 
call the 𝖵𝖯 ≠ 𝖵𝖭𝖯 hypothesis. As algebraic circuits are non-uniform models of computation, computing a polynomial more precisely 
refers to computing a family {𝑓𝑛}𝑛≥0 of polynomials, one for each 𝑛. The class 𝖵𝖯 consists of families of polynomials whose degree 
and circuit size are both polynomially bounded in the number of variables 𝑛 (denoted poly(𝑛) from now on). On the other hand, if 
a polynomial has degree poly(𝑛) and the coefficient of any given monomial can be computed in #𝖯∕poly, then the polynomial is in 
𝖵𝖭𝖯.1 It is not difficult to see that 𝖵𝖯 ⊆ 𝖵𝖭𝖯.
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Much like Cook’s original 𝖯 vs. 𝖭𝖯 hypothesis in the boolean world, very little is known in general about Valiant’s hypothesis. 
A result of Strassen [5] and Baur-Strassen [6] gives a lower bound of Ω(𝑛 log𝑛) against general circuits. A slightly better lower bound 
of Ω(𝑛2) is known if the directed acyclic graph underlying the circuit is a tree – also known as an Algebraic Formula. All polynomials 
that have formulas of size poly(𝑛) form the class 𝖵𝖥. We refer the interested reader to the excellent book of Bürgisser [7] for more 
details on Valiant’s hypothesis and connections to the Boolean world.

Intermediate in power, and in between circuits and formulas lie Algebraic Branching Programs (ABPs). An ABP is a layered directed 
acyclic graph with edges labeled by affine linear forms. There is a source vertex (𝑠) of in-degree 0 in the first layer and a sink vertex 
(𝑡) of out-degree 0 in the last layer, and edges connect vertices in adjacent layers. The maximum number of vertices in any layer is 
the width of the ABP and the number of layers is its length. Each path from 𝑠 to 𝑡 computes a polynomial that is the product of the 
edge labels along the path. The polynomial computed by the ABP is the sum of the polynomials computed by all the 𝑠⇝ 𝑡 paths.

An ABP of length 𝓁 with 𝑛𝑖 vertices in the 𝑖-th layer can be written as a product of 𝓁 − 1 matrices 
∏𝓁−1
𝑖=1 𝑀𝑖 in a natural way: the 

matrix 𝑀𝑖 is of dimension 𝑛𝑖 × 𝑛𝑖+1 and contains the edge labels between layers 𝑖 and 𝑖+1 as entries. The size of the ABP is the total 
number of vertices in the graph (or equivalently, the sum of the number of rows of the matrices in matrix representation). Similar to 
circuits and formulas, the class of polynomials that have ABPs of size poly(𝑛) is denoted 𝖵𝖡𝖯.

It is known that 𝖵𝖥 ⊆ 𝖵𝖡𝖯 ⊆ 𝖵𝖯, and conjectured that all the inclusions are strict. Valiant’s hypothesis is considered more generally 
as the problem of separating any of the classes 𝖵𝖥,𝖵𝖡𝖯 or 𝖵𝖯 from 𝖵𝖭𝖯. Unfortunately (although probably not surprisingly), general 
lower bounds in any of these models are hard to come by. In a recent work, Chatterjee, Kumar, She and Volk [8] proved a lower 
bound of Ω(𝑛2) for ABPs. Evidently, the state of affairs is quite similar to that of circuits. In fact, the polynomial 

∑𝑛

𝑖=1 𝑥
𝑛
𝑖

used in the 
lower bound is the same one that Baur and Strassen [6] used for their circuit lower bound.

In this work, we will mainly be interested in set-multilinear polynomials, of which the Iterated Matrix Multiplication polynomial 
is an excellent example. The polynomial IMM𝑛,𝑑 is defined on 𝑁 = 𝑑𝑛2 variables. The variable set 𝑋 is partitioned into 𝑑 sets 
(𝑋1,… ,𝑋𝑑 ) of 𝑛2 variables each (viewed as 𝑛 × 𝑛 matrices). The polynomial is defined as the (1,1)-th entry of the matrix product 
𝑋1 ⋅𝑋2⋯𝑋𝑑 :

IMM𝑛,𝑑 =
⎛⎜⎜⎝
⎡⎢⎢⎣

𝑥1,1 … 𝑥1,𝑛
⋮ ⋱ ⋮

𝑥1,𝑛2−𝑛+1 … 𝑥1,𝑛2

⎤⎥⎥⎦
⋯ ⋯

⎡⎢⎢⎣
𝑥𝑑,1 … 𝑥𝑑,𝑛
⋮ ⋱ ⋮

𝑥𝑑,𝑛2−𝑛+1 … 𝑥𝑑,𝑛2

⎤⎥⎥⎦
⎞⎟⎟⎠(1,1)

.

As all monomials are of the same degree 𝑑, the polynomial is homogeneous. It is also multilinear since every variable has individual 
degree at most 1. Additionally, every monomial has exactly one variable from each of the 𝑑 sets of the partition. Thus it is set-
multilinear. Henceforth, by a set-multilinear polynomial 𝑃𝑛,𝑑 over the variable set 𝑋 =𝑋1 ⊔… ⊔ 𝑋𝑑 (with |𝑋𝑖| ≤ 𝑛 for all 𝑖 ∈ [𝑑]), 
we mean a homogeneous multilinear polynomial with the following property: every monomial 𝑚 (seen as a set) in 𝑃𝑛,𝑑 satisfies 
|𝑚 ∩𝑋𝑖| = 1 for all 𝑖 ∈ [𝑑].

1.1. Our results

Our first result is a lower bound against the sum of general small-size algebraic branching programs.

Theorem 1.1 (
∑

ABP lower bound). Let 𝑑 = 𝑛𝑜(1). The polynomial IMM𝑛,𝑑 cannot be computed by the sum of poly(𝑛, 𝑑) ABPs, each of 
size (𝑛𝑑)𝑜(1).

Note that the polynomial IMM𝑛,𝑑 has an ABP of size 𝑂(𝑛𝑑). The above theorem shows that this is almost optimal: we cannot 
reduce the size significantly, even by using a sum of polynomially many ABPs.

Remark 1.2. When 𝑑 = 𝑛Ω(1), ABPs of size (𝑛𝑑)𝑜(1) cannot produce monomials of degree 𝑑. Hence, the theorem statement is obtained 
trivially (in general, a lower bound of 𝑑 is trivial for ABPs). But when 𝑑 = 𝑛𝑜(1), the model is quite powerful. In fact, for 𝑑 = 𝑛𝑜(1), 
the power sum polynomial 

∑𝑛

𝑖=1 𝑥
𝑑
𝑖
, that was used in previous ABP lower bounds can be computed efficiently using a sum of 𝑛 ABPs, 

each of size (𝑛𝑑)𝑜(1).
A lower bound of 𝑛 is not trivial for ABPs (unlike circuits and formulas). Moreover, each edge label can be a general affine 

linear form, allowing a single path to generate exponentially many monomials. Notwithstanding that, ABPs of size (𝑛𝑑)𝑜(1) are still 
an incomplete model of computation. Nevertheless, the sum of such ABPs is a complete model – every polynomial of degree 𝑑 = 𝑛𝑜(1)
can be written as a sum of 𝑛𝑂(𝑑) width-1 ABPs (monomials).

The lower bound of Theorem 1.1 also holds if we replace IMM with an appropriate polynomial from the family of Nisan-Wigderson 
design-based polynomials (see Section 3.1).

Our next result is a reformulation of Valiant’s conjecture in terms of a different model: the sum of set-multilinear ABPs (smABPs) 
on the set of variables 𝑋 =𝑋1 ⊔… ⊔ 𝑋𝑑 . An smABP in the natural order is a (𝑑 + 1) layered ABP with edges between layers 𝑖 and 
𝑖+1 labeled by linear forms in 𝑋𝑖. The most natural ABP for the polynomial IMM𝑛,𝑑 is also set-multilinear: each layer (other than the 
first and the last) has 𝑛 nodes and the edge connecting the 𝑝-th node in layer 𝑖 to the 𝑞-th node in layer 𝑖+ 1 is labeled by 𝑥𝑖,(𝑝−1)𝑛+𝑞 .
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More generally, for a permutation 𝜋 ∈ 𝑆𝑑 of the variable sets, we say that an smABP is in the order 𝜋 if the edges between 𝑖-th 
and (𝑖+ 1)-th layer are labeled by linear forms in 𝑋𝜋(𝑖).2

We denote by 
∑

smABP the sum of set-multilinear ABPs, each in a possibly different order. The width of a 
∑

smABP is the sum 
of the widths of the constituent smABPs.

We show that in the low-degree regime, superpolynomial lower bounds against 
∑

smABP imply superpolynomial ABP lower 
bounds.

Theorem 1.3 (Hardness bootstrapping). Let 𝑛, 𝑑 be integers such that 𝑑 =𝑂(log𝑛∕ log log𝑛). Let 𝑃𝑛,𝑑 be a set-multilinear polynomial in 
𝖵𝖭𝖯 of degree 𝑑. If 𝑃𝑛,𝑑 cannot be computed by a 

∑
smABP of width poly(𝑛), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

The above theorem shows that the sum of set-multilinear ABPs, which looks quite restrictive, is surprisingly powerful. This is a 
recurring theme in algebraic complexity. Interestingly, analogous reductions to the set-multilinear case were known for formulas [11, 
Theorem 3.1] and circuits [12, Lemma 2.11]. A series of works [13–17] on reducing the depth of algebraic circuits culminated in the 
rather surprising fact that good enough lower bounds for depth-3 circuits imply general circuit lower bounds. The above theorem is 
in a similar vein. The model of 

∑
smABP is particularly appealing to study since smABPs are one of the most well-understood objects 

in algebraic complexity.

Recently, [18] proved near-optimal lower bounds against set-multilinear formulas for a polynomial in 𝖵𝖡𝖯. Surprisingly, if their 
hard polynomial were computable by an smABP (or an ordered smABP, as they call it), we would obtain general formula lower bounds. 
This further illustrates the need to study smABPs.

1.2. Non-commuting matrices make it powerful

Note that if the matrices in the smABP were commutative, we can treat 
∑

smABP as a single smABP, against which we know how 
to prove lower bounds (see Section 1.5). So in order to lift the lower bound to 𝖵𝖭𝖯, it is essential that we understand the sum of 
smABPs with non-commuting matrices (see Section 1.6 for a detailed discussion).

1.3. Arbitrarily low degree suffices

The low-degree regime has recently gained a lot of attention. In a breakthrough work, Limaye, Srinivasan and Tavenas [19] showed 
how to prove superpolynomial lower bounds for constant-depth set-multilinear formulas when the degree is small (set-multilinear 
lower bounds against arbitrary depth were known before [12,20,21], but degenerated to trivial bounds when the degree was small). 
They were able to then escalate the low-degree, set-multilinear lower bounds to general constant-depth circuit lower bounds. The 
theorem above shows that the low-degree regime can be helpful in proving lower bounds for ABPs as well.

1.4. A spectrum of hardness escalation

We also give a smooth generalization of Theorem 1.3 using more general versions of both set-multilinear polynomials and smABPs. 
The variable set is partitioned as before: 𝑋 =𝑋1 ⊔… ⊔𝑋𝑑 with |𝑋𝑖| ≤ 𝑛 for all 𝑖.

A polynomial 𝑔 is called set-multi-𝑘-ic with respect to 𝑋 if every monomial of 𝑔 has exactly 𝑘 variables (with multiplicity) from 
each of the 𝑑 sets. That is, for a monomial 𝑚 (seen as a multiset) in the support of 𝑔, |𝑚 ∩𝑋𝑖| = 𝑘. When 𝑘 = 1, the polynomial 𝑔 is 
set-multilinear.

We call an ABP of length 𝑘𝑑 a set-multi-𝑘-ic ABP (denoted sm(𝑘)ABP) if every layer has edges labeled by linear forms from exactly 
one of the sets 𝑋𝑖, and there are exactly 𝑘 layers corresponding to each 𝑋𝑖. As a special case, an sm(1)ABP is just a set-multilinear 
ABP as defined before.

Theorem 1.4 (Hardness bootstrapping spectrum). Let 𝑛, 𝑑, 𝑘 be integers such that exp(𝑘𝑑 log𝑑) = poly(𝑛), and let 𝑃𝑛,𝑑,𝑘 be a set-multi-𝑘-ic 
polynomial in 𝖵𝖭𝖯 of degree 𝑘𝑑. If 𝑃𝑛,𝑑,𝑘 cannot be computed by a 

∑
sm(𝑘)ABP of width poly(𝑛), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

Remark 1.5. We note that Theorem 1.3 is an immediate consequence of Theorem 1.4 when 𝑘 = 1. An added advantage of this 
generalization is the flexibility with the degree of the hard polynomial.

The set-multi-𝑘-ic ABP is inspired from the well-studied multi-𝑘-ic depth-restricted circuits and formulas, initiated by Kayal and 
Saha [22]. We encourage readers to see [23, Chapter 14] and references therein for a comprehensive discussion.

2 This definition differs slightly from that of Forbes [9] as it does not allow affine linear forms as edge labels. We use this definition as the ABPs we encounter are 
of this more restricted form and proving lower bounds for them is sufficient. Our definition is more in line with the earlier work of Klivans and Shpilka [10].
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1.5. The sum of ROABPs perspective: the arbitrarily low variate case

One can also view Theorem 1.3 through the lens of another well-studied model in the literature, first defined by Forbes and Shpilka 
[24]. An algebraic branching program over the variables (𝑥1 ,… , 𝑥𝑛) is said to be oblivious if, for any layer, all the edge labels are 
univariate polynomials in a single variable. It is further called a read-once oblivious ABP (or an ROABP) if every variable appears in 
at most one layer.

An ROABP in the natural order is an (𝑛 + 1)-layered ABP where the edges between layers 𝑖 and 𝑖 + 1 are labeled by univariate 
polynomials in 𝑥𝑖 of degree 𝑑. If, instead, the labels were univariate polynomials in 𝑥𝜋(𝑖) for some permutation 𝜋 ∈ 𝑆𝑑 of the variables, 
then we say that the ROABP is in the order 𝜋.

The computation that an ROABP (or equivalently, an smABP) performs is essentially non-commutative since the variables along a 
path get multiplied in the same order 𝜋 as that of the ROABP (smABP). Nisan [25] introduced the powerful technique of using spaces 
of partial derivatives to study lower bound questions in non-commutative models. This technique can be used to calculate the exact 
width of the ROABP computing a polynomial.

Following our definition for smABPs, we denote by 
∑

RO the sum of ROABPs, each possibly in a different order. The width of a ∑
RO is the sum of the widths of the constituent ROABPs. A version of Theorem 1.3 can also be stated for this model. In contrast to 

the case of smABPs, we will be interested in the dual low-variate regime.

Corollary 1.6 (Low variate 
∑

RO). Let 𝑛, 𝑑 be integers such that 𝑛=𝑂(log𝑑∕ log log𝑑). Let 𝑓 ∈ 𝖵𝖭𝖯 be a polynomial on 𝑛 variables of 
individual degree 𝑑. If 𝑓 cannot be computed by a 

∑
RO of width poly(𝑑), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

Proof. Consider the invertible map 𝜙 ∶ 𝑥𝑗
𝑖
↦ 𝑥𝑖𝑗 for the indices 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑]. This transforms an ROABP on 𝑛 variables (𝑥1,… , 𝑥𝑛) 

of individual degree 𝑑 and order 𝜋, to an smABP in the same order that is set-multilinear with respect to 𝑋 = 𝑋1 ⊔… ⊔ 𝑋𝑛 with 
|𝑋𝑖| ≤ 𝑑.

We apply the map 𝜙 to the 
∑

RO computing 𝑓 . This gives us a 
∑

smABP of the same width that computes a set-multilinear 
polynomial 𝑄𝑑,𝑛 over 𝑂(𝑛𝑑) variables with 𝑛 =𝑂(log𝑑∕ log log𝑑). Since 𝑓 does not have a 

∑
RO of width poly(𝑑), 𝑄𝑑,𝑛 does not have ∑

smABP of width poly(𝑑). Now Theorem 1.3 gives us our desired separation. □

The low-variate regime3 has also recently been shown to be extremely important. The Polynomial Identity Testing (PIT) problem 
asks to efficiently test whether a polynomial (given as an algebraic circuit, for example) is identically zero. In the black-box setting, 
we are only allowed to evaluate the polynomial (circuit) at various points. Hence, PIT algorithms are equivalent to the construction 
of hitting sets – a collection of points that witness the (non)zeroness of the polynomial computed by the circuit (see [26,27] for a 
survey of PIT and techniques used).

Recently, several surprising results [28–30] essentially conclude that hitting sets for circuits computing extremely low-variate 
polynomials can be “bootstrapped” to obtain hitting sets for general circuits. See the survey of Kumar and Saptharishi [31] for an 
exposition of the ideas involved.

We now state a corollary of Theorem 1.4 that is analogous to Corollary 1.6. An oblivious ABP is said to be read-𝑘 if each variable 
𝑥𝑖 appears in at most 𝑘 layers. We denote the sum of read-𝑘 oblivious ABPs as 

∑
R(𝑘)O. Once again, the width of a 

∑
R(𝑘)O is the 

sum of the widths of the constituent branching programs.

Corollary 1.7. Let 𝑛, 𝑑, 𝑘 be integers such that exp(𝑘𝑛 log𝑛) = poly(𝑑). Let 𝑓 ∈ 𝖵𝖭𝖯 be a polynomial on 𝑛 variables of individual degree 𝑑. 
If 𝑓 cannot be computed by a 

∑
R(𝑘)O of width poly(𝑑), then 𝖵𝖡𝖯 ≠ 𝖵𝖭𝖯.

Proof. Consider the invertible map 𝜙 ∶ 𝑥𝑗
𝑖
↦ 𝑥𝑖𝑗 for the indices 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑]. This transforms an R(𝑘)OABP on 𝑛 variables 

(𝑥1,… , 𝑥𝑛) of individual degree 𝑑, to an sm(𝑘)ABP of width 𝑑 and length 𝑘𝑛 wrt variable partitioning 𝑋 = 𝑋1 ⊔… ⊔ 𝑋𝑛 with 
|𝑋𝑖| ≤ 𝑑.

We apply the map 𝜙 to the 
∑

R(𝑘)O computing 𝑓 . This gives us a 
∑

sm(𝑘)ABP of length 𝑘𝑛 that computes a set-multi-𝑘-ic 
polynomial 𝑄𝑑,𝑛,𝑘 over 𝑛𝑑 variables. Since 𝑓 does not have a 

∑
R(𝑘)O of width poly(𝑑), the transformation induced by the map 

implies that 𝑄𝑑,𝑛,𝑘 does not have 
∑

sm(𝑘)ABP of width poly(𝑑). Moreover exp(𝑘𝑛 log𝑛) = poly(𝑑). Then Theorem 1.4 gives us our 
desired separation. □

1.6. Proof techniques and previous work

Simulating an ABP using a sum of smABPs

Unlike the boolean world, both the degree 𝑑 of the polynomial, and the number of variables 𝑛 are important parameters in algebraic 
complexity. Often times, it is reasonable and useful to impose restrictions on one of them. Even in the definitions 𝖵𝖯 and 𝖵𝖭𝖯, we 
require that the degree 𝑑 be restricted by a polynomial in 𝑛 (see [32] for more discussion on the motivation behind this choice). 
Further restrictions on the degree help in proving better structural results which would otherwise be prohibitively costly to perform.

3 In general for 𝖵𝖭𝖯, we require the degree to be polynomially related to the number of variables. One way to make sense of the low variate case is to assume that 
the polynomial is defined on 𝑑 variables but only depends on the first 𝑛=𝑂(log𝑑∕ log log𝑑) many of them.
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In order to prove Theorem 1.3, we perform a sequence of structural transformations to the algebraic branching program to obtain 
a 
∑

smABP. We first homogenize the ABP (Lemma 2.2), i.e., we alter the ABP so that every vertex in the ABP computes a homogeneous 
polynomial. In addition, we will ensure that the ABP has 𝑑 layers and all the edge labels are linear forms. The homogenization of 
ABPs to this form was folklore. Subsequently, we set-multilinearize the branching program (Lemma 2.1). This step is only efficient 
in the low-degree regime since what we obtain is a sum of 𝑑𝑂(𝑑) set-multilinear ABPs.

With the reduction in place, superpolynomial lower bounds for 
∑

smABP imply the same for ABPs, albeit in the low-degree 
regime. The proof of Theorem 1.4 is similar.

Lower bounds for the sum of ABPs

Our proof of the 
∑

ABP lower bound (Theorem 1.1) uses the implicit reduction of Theorem 1.3 to 
∑

smABP. Using Nisan’s charac-

terization [25] mentioned before, we can prove exponential lower bounds against single smABPs (ROABPs), but the characterization 
does not extend to their sums. There has been progress in handling the sums in recent years, which we now briefly describe.

Arvind and Raja [33] proved a superpolynomial lower bound for the Permanent polynomial against the sum of sub-linear many 
ROABPs (the bound is exponential if the number of ROABPs is bounded by a constant). Ramya and Rao [34] showed that a sum of 
sub-exponential size ROABPs computing the multilinear polynomial defined by Raz and Yehudayoff [35] needs exponentially many 
summands. Ghosal and Rao [36] showed an exponential lower bound for the sum of ROABPs computing the multilinear polynomial 
defined by Dvir, Malod, Perifel and Yehudayoff [37], provided each of the constituent ABPs is polynomial in size.

Unfortunately, these results do not imply general ABP lower bounds using our hardness escalation theorems, as they only work 
in regimes where the degree and number of variables are comparable. Viewed differently, they cannot handle a sum of 𝑑! smABPs 
(or 𝑛! ROABPs) which is necessary to prove lower bounds in our low-degree (low-variate) regime. In a very recent work Chatterjee, 
Kush, Saraf and Shpilka [38] improve the bounds in the above works and also prove superpolynomial lower bounds against the sum 
of smABPs when the degree is 𝑑 = 𝜔(log𝑛). Improving this to work for 𝑑 =𝑂(log𝑛∕ log log𝑛) would have dramatic consequences.

Fewer results are known about read-𝑘 oblivious ABPs. They were studied in [39] as a natural generalization of ROABPs and a 
lower bound of exp(𝑛∕𝑘𝑂(𝑘)) for a single read-𝑘 oblivious ABP was shown. It remains open to improve this result to prove non-trivial 
lower bounds when 𝑘 is large, as well as to prove lower bounds for sums of read-𝑘 oblivious ABPs. When 𝑘 is small, the results of 
Ramya and Rao [34] extend to the sum of multilinear 𝑘-pass ABPs, a restriction of read-𝑘 oblivious ABPs in which the variables are 
read 𝑘 times in sequence, each time in a possibly different order.

We demonstrate a way to handle our low-degree regime in certain cases. To prove lower bounds for the sum of smABPs, we 
use the partial derivative method, introduced in the highly influential work of Nisan and Wigderson [12]. We show that the partial 
derivative measure 𝜇(⋅) is large for our hard polynomial but small for the model. In fact, a majority of the lower bounds in algebraic 
complexity (including the results described above) use modifications and extensions of this measure. For a comprehensive survey of 
lower bounds and the use of partial derivative measure in algebraic complexity, see [40,23].

We work with the polynomial IMM𝑛,𝑑 , which gives us more flexibility in independently choosing 𝑛 and 𝑑. Unfortunately, this 
choice creates a two-fold problem. The fundamental one is that IMM𝑛,𝑑 has a small smABP, as we saw before. So we can never 
prove a superpolynomial lower bound for even a single poly(𝑛, 𝑑) sized smABP (let alone their sum). One might try to avoid this by 
choosing a different hard polynomial that gives similar flexibility, perhaps something from the family of Nisan-Wigderson design-

based polynomials. But in fact, the complexity measure 𝜇 is also maximal for IMM𝑛,𝑑 . Hence, the usual partial derivative method 
cannot be used to prove lower bounds against any model that efficiently computes IMM𝑛,𝑑 . Be that as it may, it might still be possible 
to use the same technique to prove lower bounds for restrictions of the model. We are able to do this when the smABPs are sub-

polynomial in size. It also enables us to handle extremely large sums of smABPs (including those that occur from considering sums 
of multiple ABPs).

This approach works in the low-degree regime, since our reductions are efficient if the degree is very small. To handle higher 
degrees, we note that IMM𝑛,𝑑′ with 𝑑′ small can be obtained as a set-multilinear restriction of IMM𝑛,𝑑 . Therefore, our lower bounds 
translate to higher degrees to finally give superpolynomial lower bounds against sums of small-sized general ABPs.

2. Hardness bootstrapping spectrum

We begin by showing that in the low-degree regime, a small sized ABP can be simulated by a 
∑

smABP of small width. This is 
very much in the spirit of the set-multilinearization result of Limaye, Srinivasan and Tavenas ([19], Proposition 9) for small-depth 
circuits.

Lemma 2.1 (ABP set-multilinearization). Let 𝑃𝑛,𝑑 be a polynomial of degree 𝑑, set-multilinear with respect to the partition 𝑋 =𝑋1 ⊔…⊔𝑋𝑑
where |𝑋𝑖| ≤ 𝑛 for all 𝑖 ∈ [𝑑]. If 𝑃𝑛,𝑑 can be computed by an ABP of size 𝑠, then there is a 

∑
smABP of width 𝑑𝑂(𝑑)𝑠 computing the same 

polynomial.

We immediately have

Proof of Theorem 1.3. Suppose that the polynomial 𝑃𝑛,𝑑 ∈ 𝖵𝖭𝖯 can be computed by an ABP of size 𝑠. By Lemma 2.1, the polynomial 
can also be computed by a 

∑
smABP of width 𝑑𝑂(𝑑)𝑠. The width of any 

∑
smABP computing 𝑃𝑛,𝑑 is, by assumption 𝑛𝜔(1).

Consequently, our desired separation is obtained by first noting that the above discussion implies 𝑑𝑂(𝑑)𝑠 ≥ 𝑛𝜔(1), whereby the 
degree bound 𝑑 =𝑂(log𝑛∕ log log𝑛) gives 𝑑𝑂(𝑑) = poly(𝑛) and hence 𝑠 ≥ 𝑛𝜔(1). □
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In order to prove Lemma 2.1, we first homogenize the ABP (similar to the approach of Raz [11] and Limaye, Srinivasan and 
Tavenas [19]). Any vertex 𝑣 in an ABP can be thought of as computing a polynomial corresponding to the ‘sub-ABP’ between the 
source 𝑠 and the vertex 𝑣. An ABP is homogeneous if the polynomial computed at every vertex is homogeneous.

Lemma 2.2 (ABP homogenization). Let 𝑓 (𝑥1,… , 𝑥𝑛) be a degree 𝑑 polynomial. Suppose that 𝑓 can be computed by an ABP of size 𝑠. Then 
there is a homogeneous ABP of width 𝑠 and length 𝑑 that can compute the same polynomial. Furthermore, all the edge labels are linear 
forms.

The above lemma is “folklore” with the proof idea already present in [25]. We provide a proof for completeness, based on the 
exposition of [41].

Proof of Lemma 2.2. We first homogenize the ABP in a manner similar to the case of circuits. For every vertex 𝑣 (other than the 
start vertex), we replace it with 𝑑 +1 vertices 𝑣(0), 𝑣(1),… , 𝑣(𝑑). Each 𝑣(𝑖) corresponds to the homogeneous degree 𝑖 component of the 
polynomial computed at 𝑣. In the original ABP, say an edge from vertex 𝑢 to 𝑣 is labeled 𝓁+ 𝛿 (𝓁 is a linear form and 𝛿 is a constant). 
We replace it with 2𝑑 + 1 edges. We add edges from 𝑢(𝑖) to 𝑣(𝑖) with label 𝛿 for 0 ≤ 𝑖 ≤ 𝑑. And we add edges from 𝑢(𝑖) to 𝑣(𝑖+1) with 
the label 𝓁 for 0 ≤ 𝑖 ≤ 𝑑 − 1. This ABP now computes the same polynomial as before and is homogeneous.

𝑣𝑢
𝓁 + 𝛿 ⟶

𝑣(0)

𝑣(1)

⋮

𝑣(𝑑)

𝑢(0)
𝛿

𝓁

𝑢(1)
𝛿

𝓁

⋮

𝑢(𝑑)
𝛿

To make the length 𝑑, we modify it so that all vertices computing degree 𝑖 polynomials are in the layer 𝑖 (this makes the width 
𝑠). If some of these vertices have no incoming edges from layer 𝑖−1, we can safely remove them. Note that the edges between layers 
will be linear forms. But we may have edges labeled with constants between two vertices in the 𝑖-th layer due to our reorganization.

𝑤(𝑖+1)

𝑣(𝑖)

𝓁′

𝑢(𝑖)
𝓁

𝛿

⟶ 𝑤(𝑖+1)

𝑣(𝑖)

𝓁′

𝑢(𝑖)
𝓁 + 𝛿𝓁′

So for every vertex 𝑢 in the 𝑖-th layer, and vertex 𝑤 in the (𝑖 + 1)-th layer, we add an edge with a linear form obtained by the 
sub-ABP between 𝑢 and 𝑤. Then we drop all the in-layer edges. This gives a homogeneous ABP of 𝑑 layers with all edges being linear 
forms. Indeed, the edges we added initially were already linear forms, and the sub-ABPs all compute linear forms as well since every 
path is of length 2 with one edge label being a constant and the other being a linear form. Note that there are multiple output vertices 
now. In layer 𝑖 for example, the sum of the polynomials computed at vertices with no outgoing edges is the degree 𝑖 homogeneous 
component of 𝑓 . □

As our central argument, we show that this homogeneous ABP can be efficiently set-multilinearized.

Proposition 2.3. Consider a set-multilinear polynomial 𝑃𝑛,𝑑 over the variable set 𝑋 =𝑋1 ⊔…⊔𝑋𝑑 (with |𝑋𝑖| ≤ 𝑛 for all 𝑖 ∈ [𝑑]) computed 
by a homogeneous ABP of width 𝑤 and length 𝑑. Then, there is a 

∑
smABP of width 𝑑!𝑤 computing 𝑃𝑛,𝑑 .

Proof. We begin by writing the homogeneous ABP in its matrix form

𝑃𝑛,𝑑 =
𝑑∏
𝑖=1 
𝑀𝑖, (2.1)
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where each 𝑀𝑖 is a 𝑤×𝑤 matrix with entries that are linear forms in the variables 𝑋. We further write each 𝑀𝑖 as a sum 
∑𝑑

𝑗=1𝑀𝑖𝑗 , 
where for all 𝑗, 𝑀𝑖𝑗 is an 𝑤×𝑤 matrix with entries that are linear forms, but now in the 𝑋𝑗 variables. Doing this for every 𝑀𝑖 yields

𝑃𝑛,𝑑 =
𝑑∏
𝑖=1 

𝑑∑
𝑗=1 
𝑀𝑖𝑗. (2.2)

Note that since 𝑃𝑛,𝑑 is a homogeneous set-multilinear polynomial, the non-set-multilinear products in this expression can be 
ignored. The matrices only contain linear forms, and thus non-set-multilinear products in the above equation only produce non-set-

multilinear monomials. We can ignore any product of the form (⋯𝑀𝑖𝑗⋯𝑀𝑖′𝑗⋯) for different 𝑖, 𝑖′. We can rearrange to obtain

𝑃𝑛,𝑑 =
∑
𝜋∈𝑆𝑑

𝑑∏
𝑖=1 
𝑀𝑖𝜋(𝑖). (2.3)

This represents 𝑃𝑛,𝑑 as the sum of 𝑑! set-multilinear ABPs, each of width 𝑤. □

With this transformation in hand, we can complete the reduction and obtain Lemma 2.1.

Proof of Lemma 2.1. Suppose that the ABP for the polynomial 𝑃𝑛,𝑑 has size 𝑠. Using Lemma 2.2, we can homogenize it to obtain a 
𝑑-layered homogeneous ABP of width 𝑠. By Proposition 2.3, we obtain a 

∑
smABP of width 𝑑!𝑠 = 𝑑𝑂(𝑑)𝑠. □

The proof of Theorem 1.4 follows the template of Theorem 1.3. We begin with ABP homogenization, followed by a structural 
transformation to the sum of set-multi-𝑘-ic ABP. The superpolynomial lower bound assumption on 

∑
sm(𝑘)ABP gives the desired 

separation result. The following lemma is analogous to Lemma 2.1.

Lemma 2.4 (ABP to 
∑

sm(𝑘)ABP). Let 𝑃 be a set-multi-𝑘-ic polynomial with respect to the partition 𝑋 =𝑋1 ⊔…⊔𝑋𝑑 where |𝑋𝑖| ≤ 𝑛 for 
all 𝑖 ∈ [𝑑]. If 𝑃 can be computed by an ABP of size 𝑠, then there is a 

∑
sm(𝑘)ABP of width 𝑠 ⋅ (𝑘𝑑)!∕(𝑘!)𝑑 computing the same polynomial.

Proof. Using Lemma 2.2 on the ABP of size 𝑠 computing the polynomial 𝑃 of degree 𝑘𝑑, we obtain a 𝑘𝑑-layered homogeneous ABP
of width 𝑠. Consider the homogeneous ABP in its matrix form:

𝑃 =
𝑘𝑑 ∏
𝑖=1 
𝑀𝑖,

where each 𝑀𝑖 is a 𝑠 × 𝑠 matrix with entries that are linear forms in the variable 𝑋. Express each 𝑀𝑖 as a sum 
∑𝑑

𝑗=1𝑀𝑖𝑗 , where for 
all 𝑗, 𝑀𝑖𝑗 is a 𝑠 × 𝑠 matrix with entries that are linear forms only in 𝑋𝑗 variables. Doing this for every 𝑀𝑖 yields

𝑃 =
𝑘𝑑 ∏
𝑖=1 

𝑑∑
𝑗=1 
𝑀𝑖𝑗.

Since 𝑃 is a homogeneous set-multi-𝑘-ic polynomial, products of the form (⋯𝑀𝑖𝑗⋯𝑀𝑖′𝑗⋯) for different 𝑖, 𝑖′ are allowed in the 
expression, but not more than 𝑘. Formally, we say a tuple 𝒋 ∶= (𝑗1,… , 𝑗𝑘𝑑 ) ∈ [𝑑]𝑘𝑑 is 𝑘-unbiased if all the elements in the tuple repeat 
exactly 𝑘 times. Let 𝑆 be the set of such 𝑘-unbiased tuples. We rearrange to obtain

𝑃 =
∑
𝒋∈𝑆

𝑘𝑑 ∏
𝑖=1 
𝑀𝑖𝑗𝑖

.

Noting that |𝑆| = (𝑘𝑑)!∕(𝑘!)𝑑 , the expression above represents 𝑃 as sum of (𝑘𝑑)!∕(𝑘!)𝑑 set-multi-𝑘-ic ABPs, each of width 𝑠. □

It is straightforward to prove Theorem 1.4 using the above lemma. The proof is similar to Theorem 1.3.

Proof of Theorem 1.4. Suppose that the polynomial 𝑃𝑛,𝑑,𝑘 ∈ 𝖵𝖭𝖯 can be computed by an ABP of size 𝑠. Using Lemma 2.4, it can 
also be computed by a 

∑
sm(𝑘)ABP of width 𝑠 ⋅ (𝑘𝑑)!∕(𝑘!)𝑑 . By assumption, the width of any 

∑
sm(𝑘)ABP computing 𝑃 is 𝑛𝜔(1). We 

obtain the desired separation 𝑠 ≥ 𝑛𝜔(1) by observing that:

𝑠 ⋅ (𝑘𝑑)!∕(𝑘!)𝑑 = 𝑠 ⋅ exp(𝑘𝑑 log𝑑) ≥ 𝑛𝜔(1),

since exp(𝑘𝑑 log𝑑) = poly(𝑛). □

3. Lower bound for the sum of ABPs

We are now ready to show that in the low degree regime, the Iterated Matrix Multiplication polynomial IMM𝑛,𝑑 cannot be 
computed even by a polynomially large sum of ABPs, provided that each of the ABPs is small in size. We begin by stating a lower 
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bound for 
∑

smABP in the low-degree regime. Note that in this regime, IMM has an smABP of width 𝑂(𝑛𝑑). The lemma shows that 
even using the sum of multiple smABPs cannot help in reducing the width.

Lemma 3.1. Any 
∑

smABP computing the polynomial IMM𝑛,𝑑 with 𝑑 =𝑂(log𝑛∕ log log𝑛), must have width at least 𝑛Ω(1).

Proof. Let the maximum width of any smABP in the sum be 𝑤. Every path in a particular set-multilinear ABP is of length 𝑑 and 
computes a product of linear forms. Using the definition of ABP computation, we sum over all paths to obtain a depth-3 set-multilinear 
circuit4 of top fanin 𝑤𝑑 . Doing the same for all the smABPs, we get a depth-3 set-multilinear circuit of top fan-in at most 𝑑!𝑤𝑑 .

We now apply the partial derivative method. Split 𝑋 =𝑋1 ⊔…⊔𝑋𝑑 into ‘even’ and ‘odd’ parts. That is, we consider the partition 
𝑋 =𝑋(0) ⊔𝑋(1), with

𝑋(0) =𝑋2 ⊔𝑋4 ⊔… ⊔𝑋𝑘, and 𝑋(1) =𝑋1 ⊔𝑋3 ⊔… ⊔𝑋𝑘′ , (3.1)

where 𝑘 = 2⌊𝑑∕2⌋ and 𝑘′ = 2⌈𝑑∕2⌉− 1.

The partial derivative matrix (𝑓 ) for any polynomial 𝑓 has rows indexed by set-multilinear monomials in 𝑋(0) and columns 
indexed by set-multilinear monomials in 𝑋(1). Consider now monomials 𝑚0,𝑚1 that are set-multilinear in 𝑋(0),𝑋(1) respectively. For 
any set-multilinear polynomial 𝑓 , the (𝑚0,𝑚1) entry in (𝑓 ) is the coefficient of the monomial 𝑚0 ⋅𝑚1 in 𝑓 . It is straightforward to 
see that the partial derivative matrix of IMM𝑛,𝑑 is of full rank, that is, rank((IMM𝑛,𝑑 )) = 𝑛𝑑∕2.

On the other hand, when we consider a set-multilinear 
∑∏∑

circuit, the linear forms at the bottom have a rank of at most 1
with respect to any partition of 𝑋. Consequently, taking products of linear forms cannot result in a polynomial of rank greater than 
1. Finally, subadditivity of matrix rank implies that the rank of the set-multilinear circuit is at most the top-fanin 𝑑!𝑤𝑑 , giving

𝑛𝑑∕2 ≤ 𝑑!𝑤𝑑. (3.2)

Using the fact that 𝑑! = 𝑂(𝑑𝑑 ) = poly(𝑛) for our degree regime, it now follows that 𝑤 = 𝑛Ω(1) and we obtain the 
∑

smABP lower 
bound. □

Suppose we had to prove the lower bound of Theorem 1.1 for a single ABP computing IMM. We could then use Lemma 3.1 above 
in conjunction with Lemma 2.1 to conclude the result. But when we are dealing with a sum of ABPs, we need to be more careful in 
how we set-multilinearize since the ABPs no longer need to compute set-multilinear or even homogeneous polynomials.

Proof of Theorem 1.1. Suppose that IMM𝑛,𝑑 (with 𝑑 ≤ 𝑛𝑜(1)) can be written as the sum of 𝑚 ABPs of size 𝑠 = 𝑛𝑜(1) each.5 In the 
corresponding matrix form, we have

IMM𝑛,𝑑 =
𝑚 ∑
𝑖=1 

𝓁∏
𝑗=1 
𝑀𝑖𝑗, (3.3)

where each 𝑀𝑖𝑗 is an 𝑠 × 𝑠 matrix and 𝓁 ≤ 𝑠.

Consider now the polynomial IMM𝑛,𝑑′ with 𝑑′ = 𝑂(log𝑛∕ log log𝑛). This polynomial can be obtained as a restriction of IMM𝑛,𝑑

by setting all matrices other than the first 𝑑′ in the definition of IMM to the identity matrix 𝐼𝑛. Correspondingly, Equation (3.3) now 
becomes

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1 

𝓁∏
𝑗=1 
𝑀 ′
𝑖𝑗
, (3.4)

where just like in (3.3), each 𝑀 ′
𝑖𝑗

is an 𝑠 × 𝑠 matrix and 𝓁 ≤ 𝑠. Note that any lower bound on IMM𝑛,𝑑′ also holds for IMM𝑛,𝑑 .

We would like to set-multilinearize Equation (3.4). But we cannot directly apply Lemma 2.1 since the ABPs in the sum need not 
compute a set-multilinear polynomial anymore. In fact, they need not even compute a homogeneous polynomial. Nevertheless, we 
are only interested in the homogeneous component of degree 𝑑′ of the polynomials that these ABPs compute, the rest vanishing in 
the final sum.

Consider a single ABP 𝐴 of size 𝑠 = 𝑛𝑜(1) from the sum of 𝑚 ABPs above. Suppose that it computes a (possibly non-homogeneous) 
polynomial of degree 𝑑𝐴. Using Lemma 2.2, we can homogenize 𝐴 to obtain an ABP of length 𝑑𝐴 and width 𝑠, with linear forms on 
the edges. Consider now the (possibly empty) set 𝑇 of vertices in layer 𝑑′ of this ABP that have no outgoing edges. For every 𝑣 ∈ 𝑇 , 
the sub-ABP between the start vertex 𝑠 and the vertex 𝑣 computes a homogeneous polynomial of degree 𝑑′, monomials of which 
might occur in the final polynomial IMM𝑛,𝑑′ . Vertices not in 𝑇 can be safely ignored as they have outgoing edges with linear forms 
on them and hence will only contribute to monomials of degree greater than 𝑑′ in the polynomial computed by 𝐴.

We now identify all the vertices in 𝑇 with a single vertex 𝑡. Furthermore, we replace all the possible multi-edges generated between 
a vertex 𝑢 in layer 𝑑′ − 1 and the vertex 𝑡, with a single edge that has as its edge label the sum of all the multi-edge labels. This gives 

4 Every vertex in a set-multilinear circuit computes a set-multilinear polynomial with respect to a subset of the variable sets.
5 When 𝑑 > 𝑛𝑜(1) , the lower bound trivially holds.
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us a homogeneous ABP of width 𝑠 and length 𝑑′ computing the homogeneous component of degree 𝑑′ of the polynomial computed 
by 𝐴. Performing this operation for each of the 𝑚 ABPs, we can write

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1 

𝑑′∏
𝑗=1 
𝑀 ′
𝑖𝑗
, (3.5)

where the new matrices obtained after homogenization have been renamed to 𝑀 ′ for brevity. As before, we split each 𝑀 ′
𝑖𝑗

as a sum ∑𝑑′

𝑘=1𝑀
′
𝑖𝑗𝑘

where for all 𝑘 ∈ [𝑑′], 𝑀 ′
𝑖𝑗𝑘

is an 𝑠 × 𝑠 matrix with entries that are linear forms in the 𝑋𝑘 variables.6

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1 

𝑑′∏
𝑗=1 

𝑑′∑
𝑘=1
𝑀 ′
𝑖𝑗𝑘
. (3.6)

In the proof of Proposition 2.3, we were crucially using the fact that the polynomial computed by the ABP was set-multilinear in 
order to ignore non-set-multilinear products. Although this is not the case any longer, we can still ignore all the non-set-multilinear 
products since they only produce non-set-multilinear monomials and the sum of the ABPs is IMM𝑛,𝑑′ , a set-multilinear polynomial. 
We obtain an expression similar to Equation (2.3):

IMM𝑛,𝑑′ =
𝑚 ∑
𝑖=1 

∑
𝜋∈𝑆𝑑′

𝑑′∏
𝑗=1 
𝑀 ′
𝑖𝑗𝜋(𝑗). (3.7)

That is, IMM𝑛,𝑑′ can be written as the sum of 𝑚𝑑′! smABPs, each of width 𝑠. We now analyze similarly to the proof of Lemma 3.1. 
We convert the 

∑
smABP to a depth 3 set-multilinear circuit of top-fanin at most 𝑚𝑑′!𝑠𝑑′ . Using the exact same partition of 𝑋 into 

𝑋(0) and 𝑋(1) as in (3.1), we construct the partial derivative matrix  for IMM𝑛,𝑑′ and the set-multilinear 
∑∏∑

circuit that we 
obtained. The rank calculation results in

𝑛𝑑
′∕2 ≤𝑚𝑑′!𝑠𝑑′ , (3.8)

which along with 𝑠 = 𝑛𝑜(1) and 𝑑′! = poly(𝑛) gives 𝑚 = 𝑛𝜔(1). □

3.1. Lower bound for NW𝑛,𝑑

We show that the lower bound of Theorem 1.1 also holds for a polynomial from the family of Nisan-Wigderson design-based 
polynomials.

Let 𝔽𝑛 be a field of size 𝑛 (we assume that 𝑛 is a power of a prime). We will work in the low-degree regime. For 
𝑑 =𝑂(log𝑛∕ log log𝑛), consider the set of variables 𝑋 = 𝑋1 ⊔… ⊔ 𝑋𝑑 where 𝑋𝑖 = {𝑥𝑖𝑗 ∣ 𝑗 ∈ [𝑛]} for all 𝑖 ∈ [𝑑]. Let  be the set 
of all univariate polynomials 𝑓 (𝑦) ∈ 𝔽𝑛[𝑦] of degree less than 𝑑∕2. The polynomial NW𝑛,𝑑 on the above 𝑛𝑑 variables is defined as

NW𝑛,𝑑 (𝑋) =
∑
𝑓∈

∏
𝑖∈[𝑑]

𝑥𝑖𝑓 (𝑖).

Each monomial encodes a univariate polynomial of degree less than 𝑑∕2. Consider the partition 𝑋 =𝑋(0) ⊔𝑋(1) from (3.1). For 
a monomial 𝑚0 = 𝑥2𝑗2 ⋯𝑥𝑘𝑗𝑘 (with all 𝑗 indices in [𝑛]) that is set-multilinear in 𝑋(0) , there is a unique “extension monomial” 𝑚1
(set-multilinear in 𝑋(1)) such that 𝑚0𝑚1 is a monomial of NW𝑛,𝑑 . This is because 𝑚0 encodes the evaluations of some univariate 
polynomial on points {2,… , 𝑘}. As the length of 𝑚0 is at least 𝑑∕2, interpolating these values gives a unique polynomial 𝑓 which 
then determines the corresponding 𝑚1 – obtained by evaluating 𝑓 on the remaining points {1,3,… , 𝑘′} in [𝑑].

This implies that the partial derivative matrix (NW𝑛,𝑑 ) of size 𝑛𝑑∕2 ×𝑛𝑑∕2 has full rank. The same rank analysis as before on sums 
of ABPs gives us Theorem 1.1, but with NW𝑛,𝑑 as the hard polynomial. Nevertheless, the techniques used seem to not be enough to 
get us any better lower bounds. In particular, the loss of information in the conversion of an smABP (an essentially non-commutative 
model) to a set-multilinear circuit seems to be too large.

4. Discussion and open problems

In order to separate 𝖵𝖡𝖯 from 𝖵𝖭𝖯, we need to prove super-polynomial lower bounds against 
∑

smABP for a polynomial in 𝖵𝖭𝖯
that we expect to be hard. As noted above, the IMM polynomial is in 𝖵𝖡𝖯 (in fact, it is a canonical way to define the class 𝖵𝖡𝖯) 
and cannot be used for such a separation. Since our Theorem 1.1 also holds for a polynomial from the Nisan-Wigderson family of 
design-based polynomials that is in 𝖵𝖭𝖯 but not conjectured to be in 𝖵𝖡𝖯, it is a better candidate.

A first step toward proving ABP lower bounds would be to prove any non-trivial lower bounds against the sum of smABPs in the 
low degree regime, i.e. prove some lower bound for the sum of 𝑑! smABPs. Another interesting direction is to show a reduction from 
ABPs to the sum of fewer than 𝑑! smABPs, with a possibly super polynomial blow up in the smABP size. This would still lead to ABP 

6 Alternately, we can directly convert each of the 𝑚 ABPs to a homogeneous depth-3 circuit and use the result of [12] to prove our result.
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lower bounds if we can prove strongly exponential lower bounds against the sum of (fewer) smABPs. This question remains open as 
well.
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